|
Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1–11. https://doi.org/10.1016/j.edurev.2016.11.002
Bahja, M. (2021). Natural language processing applications in business. E-Business - Higher Education and Intelligence Applications. https://doi.org/10.5772/intechopen.92203
Bahl, L. R., Brown, P. F., de Souza, P. V., Mercer, R. L., & Picheny, M. A. (1993). A method for the construction of acoustic Markov models for words. IEEE Transactions on Speech and Audio Processing, 1(4), 443–452. https://doi.org/10.1109/89.242490
Burchfiel, A. (2022, October 11). What is NLP (Natural Language Processing) tokenization? tokenex. Retrieved December 6, 2022, from https://www.tokenex.com/blog/ab-what-isnlp-natural-language-processingtokenization/#:~:text=Tokenization%20is%20used%20in%20natural,into%20understan dable%20parts%20(words)
Cambria, E., & White, B. (2014). Jumping NLP curves: A review of Natural Language Processing Research [review article]. IEEE Computational Intelligence Magazine, 9(2), 48–57. https://doi.org/10.1109/mci.2014.2307227
Carmigniani, J., & Furht, B. (2011). Augmented reality: An overview. Handbook of Augmented Reality, 3–46. https://doi.org/10.1007/978-1-4614-0064-6_1
Cheng, D., Wang, Q., Liu, Y., Chen, H., Ni, D., Wang, X., Yao, C., Hou, Q., Hou, W., Luo, G., & Wang, Y. (2021). Design and manufacture AR head-mounted displays: A review and outlook. Light: Advanced Manufacturing, 2(3), 336. https://doi.org/10.37188/lam.2021.024
Dodiya, T. (2021). Using term frequency - inverse document frequency to find the relevance of words in Gujarati language. International Journal for Research in Applied Science and Engineering Technology, 9(4), 378–381.https://doi.org/10.22214/ijraset.2021.33625
Dubois, E., & Nigay, L. (2000). Augmented reality. Proceedings of DARE 2000 on Designing Augmented Reality Environments - DARE '00. https://doi.org/10.1145/354666.354695
Dutsinma, F. L., Pal, D., Funilkul, S., & Chan, J. H. (2022). A systematic review of voice assistant usability: An ISO 9241–11 approach. SN Computer Science, 3(4). https://doi.org/10.1007/s42979-022-01172-3
Guo, Q. (2015). Learning in a Mixed Reality System in the Context of Industry 4.0. Journal of Technical Education. vol. 3, no. 2, pp. 92–115, ISSN 2198-0306.
Hoy, M. B. (2018). Alexa, Siri, Cortana, and more: An introduction to voice assistants. Medical Reference Services Quarterly, 37(1), 81–88. https://doi.org/10.1080/02763869.2018.1404391 46
Irawati, S., Green, S., Billinghurst, M., Duenser, A., & Ko, H. (2006). An evaluation of an augmented reality multimodal interface using speech and paddle gestures. Advances in Artificial Reality and Tele-Existence, 272–283. https://doi.org/10.1007/11941354_28
Lagi, M. (2019, December 13). Natural language processing – business applications. Emerj Artificial Intelligence Research. Retrieved December 6, 2022, from https://emerj.com/ai-sector-overviews/natural-language-processing-businessapplications/
Loizeau, Q., Danglade, F., Ababsa, F., & Merienne, F. (2019). Evaluating added value of augmented reality to assist aeronautical maintenance workers—experimentation on onfield use case. Virtual Reality and Augmented Reality, 151–169. https://doi.org/10.1007/978-3-030-31908-3_10
Low, D. Y., Poh, P. E., & Tang, S. Y. (2022). Assessing the impact of augmented reality application on students’ learning motivation in chemical engineering. Education for Chemical Engineers, 39, 31–43. https://doi.org/10.1016/j.ece.2022.02.004
Meng, J., Zhang, J., & Zhao, H. (2012). Overview of the speech recognition technology. 2012 Fourth International Conference on Computational and Information Sciences. https://doi.org/10.1109/iccis.2012.202
Milgram, P., & Kishino, F. (1994). A Taxonomy of Mixed Reality Visual Displays. IEICE Trans. Information Systems. vol. E77-D, no. 12. 1321-1329.
Moawad, A., Mohammed, F., El-Mansy, A., Mohammed, N., & Abd-Ghaffar, A. (2012). Speech Recognition System. In Smart Blind Stick (pp. 7–8). Mansoura University: Department of Electronics and Communication Engineering
Naziya S., S. and Deshmukh, R.R. (2016) “Speech recognition system – A Review,” IOSR Journal of Computer Engineering, 18(04), pp. 01–09. Available at: https://doi.org/10.9790/0661-1804020109.
Neb, A., & Strieg, F. (2018). Generation of AR-enhanced assembly instructions based on Assembly features. Procedia CIRP, 72, 1118–1123. https://doi.org/10.1016/j.procir.2018.03.210
Piumsomboon, T., Altimira, D., Kim, H., Clark, A., Lee, G., & Billinghurst, M. (2014). Grasp-shell vs gesture-speech: A comparison of direct and indirect natural interaction techniques in augmented reality. 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). https://doi.org/10.1109/ismar.2014.6948411
Priya B, Nandhini J.M, & Gnanasekaran T. (2021). An analysis of the applications of natural language processing in various sectors. Advances in Parallel Computing. https://doi.org/10.3233/apc210109
Ras, E., Wild, F., Stahl, C., & Baudet, A. (2017). Bridging the skills gap of workers in Industry 4.0 by Human Performance Augmentation Tools. Proceedings of the 10th International Conference on Pervasive Technologies Related to Assistive Environments. https://doi.org/10.1145/3056540.3076192 47
Ratz, A. V. (2022, April 8). Multinomial NAЇVE Bayes' for documents classification and Natural Language Processing (NLP). Medium. Retrieved December 15, 2022, from https://towardsdatascience.com/multinomial-na%C3%AFve-bayes-for-documentsclassification-and-natural-language-processing-nlp-e08cc848ce6
Sharma, A., Mehtab, R., Mohan, S., & Mohd Shah, M. K. (2021). Augmented reality – an important aspect of industry 4.0. Industrial Robot: the International Journal of Robotics Research and Application, 49(3), 428–441. https://doi.org/10.1108/ir-09-2021-0204
Speechmatics. (2022). The Voice Report 2022. Retrieved November 8, 2022, from https://assets.ctfassets.net/yze1aysi0225/1LwFuhCeZKZQlGDQLPoIoN/2e5459f45aa7 1de3284aedb56553bcd4/The-Speechmatics-Voice-Report-2022.pdf
Tang, Y. M., Chau, K. Y., Kwok, A. P., Zhu, T., & Ma, X. (2022). A systematic review of immersive technology applications for medical practice and education - trends, application areas, recipients, teaching contents, evaluation methods, and performance. Educational Research Review, 35, 100429. https://doi.org/10.1016/j.edurev.2021.100429
Taylor, A., Marcus, M., & Santorini, B. (2003). The penn treebank: An overview. Treebanks, 5–22. https://doi.org/10.1007/978-94-010-0201-1_1
Wang, Z., Bai, X., Zhang, S., Billinghurst, M., He, W., Wang, P., Lan, W., Min, H., & Chen, Y. (2022). A comprehensive review of Augmented Reality-based instruction in manual assembly, training and Repair. Robotics and Computer-Integrated Manufacturing, 78, 102407. https://doi.org/10.1016/j.rcim.2022.102407
Wang, Z., Bai, X., Zhang, S., He, W., Zhang, X., Zhang, L., Wang, P., Han, D., & Yan, Y. (2019). Information-level AR instruction: A novel assembly guidance information representation assisting user cognition. The International Journal of Advanced Manufacturing Technology, 106(1-2), 603–626. https://doi.org/10.1007/s00170-019- 04538-9
Washani, N. and Sharma, S. (2015) “Speech recognition system: A Review,” International Journal of Computer Applications, 115(18), pp. 7–10. Available at: https://doi.org/10.5120/20249-2617.
Werrlich, S., Daniel, A., Ginger, A., Nguyen, P.-A., & Notni, G. (2018). Comparing HMDbased and paper-based training. 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). https://doi.org/10.1109/ismar.2018.00046
Wu, J. (2020). Overview of a Pattern Recognition System. In Essentials of Pattern Recognition: An Accessible Approach (pp. 44-62). Cambridge: Cambridge University Press. doi:10.1017/9781108650212.005
|