[1]黃順豐,2018,「不銹鋼還原碴水泥砂漿新拌性質及強度之研究」,國立高雄應用科技大學土木工程與防災科技研究所碩士論文。[2]林育呈,2018,「矽質混凝土於耐久性試驗之試用性研究」,國立台灣海洋大學材料工程研究所碩士論文。[3]Irem Zeynep Yildirim, Monica Prezzi, 2011, “Chemical, mineralogical, and morphological properties of steel slag” Adv. Civil Eng.
[4]林柏彰,2012,「還原爐碴取代水泥性質之研究」,國立台北科技大學土木與防災研究所碩士論文。[5]經濟部工業局,2017,「電弧爐還原碴安定化技術手冊」。
[6]Wang, 2017, “The soundness of steel slag with different free CaO and MgO contents,” Construction and Building Materials,Volume 151, pp. 138-146.
[7]Fei Jin, 2015, “Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste” Construction and Building Materials, Volume 57, pp. 8-16.
[8]吳文龍,2001,「電弧爐煉鋼還原爐碴取代水泥材料之可行性探討」,台灣環保產業雙月刊。
[9]刑金池,2004,「電弧爐氧化碴資源化利用研究」,國立台北科技大學土木與防災研究所碩士論文。[10]蕭致遠、陳立、黃偉慶,2002,「利用電弧爐還原碴製成還原碴水泥之可行性研究」,經濟部工業局工業減廢暨永續發展研討會。
[11]鐘文煥,2010,「爐碴細粒料應用於製作鹼活化還原碴混凝土可行性研究」,國立中央大學土木工程學系碩士論文。[12]余騰耀,1996,「電弧爐煉鋼業廢棄物減量及資源回收」,環保特刊,pp.193~221。
[13]孫德和,1992,「不銹鋼爐碴在混凝土材料之應用研究」,國立高雄應用科技大學土木工程與防災科技研究所碩士論文。[14]Yeong-Nain Sheen, Her-Yung Wang, Te-Ho Sun, 2013, “A study of engineering properties of cement mortar with stainless steel oxidizing slag and reducing slag resource materials”, Construction and Building Materials, Volume 40, pp. 239-245.
[15]周佳晏,2013,「不銹鋼還原碴應用於自充填混凝土之工程性質研究」,國立高雄應用科技大學土木工程與防災科技研究所碩士論文。[16]孫德和,2015,「不銹鋼爐碴安定化及其應用在自充填混凝土之研究」,國立高雄應用科技大學土木工程系土木工程科技博士班博士論文。[17]曹哲豪,2018,「不銹鋼還原碴製成環保水泥砂漿膨脹行為之研究」,國立高雄應用科技大學土木工程與防災科技研究所碩士論文。[18]廖盈如,2013,「不銹鋼還原碴應用於預拌土壤材料之工程性質研究」,國立高雄應用科技大學土木工程與防災科技研究所碩士論文。[19]Beshears and Tutumluer, 2013, “Reclaimed Asphalt Pavement with Steel Slag Aggregate”, TR NEWS 288, pp.46-47.
[20]Mahmoud,A., 2012, “Laboratory Studies to Investigate the Properties of Cir Mixes Containing Steel Slag as a Substitute for Virgin Aggregates”, Construction and Building Materials, Vol.26, pp.475-480.
[21]Puertas, F., Garcia-Diaz, I., Barba, A., Gazulla, M.F., Palacios, M., Gomez, M.P., and Martinez-Ramirez, S., 2008, “Ceramic wastes as alternative raw materials for Poltland cement clinker production”, Cement and Concrete Composite, Vol. 30, pp.798-805.
[22]Saccani, A., Bignozzi, M.C., 2010, “ASR expansion behavior of recycled glass fine aggregates in concrete”, Cement and Concrete Research, Vol. 40, pp. 531-536.
[23]俞紹康,2011,「經高溫製程產生含矽再生粒料之鹼質活性研究」,國立中央大學碩士論文。[24]Her-Yung Wang, Kuo-Wei Chen, 2016, “A study of the engineering properties of CLSM with a new type of slag”, Construction and Building Materials, Vol.102, pp.422-427.
[25]Duc-Hien Le, Yeong-Nain Sheen, Quoc-Bao Bui, 2017, “An assessment on volume stabilization of mortar with stainless steel slag sand”, Construction and Building Materials, Vol.155, pp.200-208.
[26]Lan, L.H., Guo, W.Q., 2007, “Treatment of Cement with Un-Certificated Stability and Stability Test of Concrete”, Shanxi Architecture, Vol.33(34), pp. 165-166.
[27]US Federal Highway Administration, Recycled materials in highway environment, 2010, available at http://www.tfhrc.gov/hnr20/recycle accessed on may 2.
[28]Kuo, W.T., Shu, C.Y., 2015, “Effect of particle size and curing temperature on expansion reaction in electric arc furnace oxidizing slag aggregate concrete”, Construction and Building Materials, Vol.94, pp.488-493.
[29]Shu, C.Y., Kuo, W.T., 2015, “Expansion behavior ofconcretecontaining different steel slag sggregate sizes under heat curing”, Computer and Concrete, Vol. 16(3), pp. 487-502.
[30]Kuo, W.T., Shu, C.Y., Han, Y.W., 2014, “Electric arc furnace oxidizing slag mortar with volume stability for rapid detection”, Construction and Building Materials, Vol.53, pp.635-641.
[31]Kuo, W.T., Shu, C.Y., 2015, “Expansion behavior of low-strength steel slag mortar during high-temperature catalysis”, Computer and Concrete, Vol. 16(2), pp. 261-274.
[32]Yang, G.H., Yuan, M.D., 2004, “The hyperbola model for autogenous expansion volume deformation of Mgo concrete”, J. Hyd. Eng, Vol. 2, pp. 6-7.
[33]Li, X., Yan, P.Y., 2010, “Effect of high temperature curing on hydration degree and micro-morphology of complex binder”, Journal of Central South University, Vol. 41(6), pp. 2321-2326.
[34]Kawamura, M., Takomoto, K., Hasaba, S., 1983, “Application of quantitative EDXA analysis and microhardness measurements to the study of alkali-silica reaction mechanisms”, Proceedings 6th Int. Conf. Danish Concrete Association, pp.167-174, Copenhagen.
[35]Hobbs, D. W., Gutteridge, W.A., 1979, “Particle size of aggregate and its influence upon the expansion caused by the alkali silica reaction”, Magazine of Concrete Research, Vol. 31 (109), pp. 235-242.
[36]Diamond, S., Thaulow, N., 1974, “A study of expansion due to alkali-silica reaction as conditioned by the grain size of the reactive sggregate”, Cement and Concrete Research, Vol. 4(4), pp. 591-607.
[37]李釗、劉志堅,2002,「鋼筋混凝土耐久性」,工程災害-結構安全與補強講習班國軍設施工程諮詢小組,pp. 1-41。
[38]王瑞陽,2010,乾濕冷熱循環對飛灰及爐石混凝土抗硫酸鹽鈉性質影響,國立高雄應用科技大學土木工程與防災科技研究所碩士論文。[39]J. F. Young, S. Mindess, 1981 “Concrete”, Prentice Hall.
[40]C.Castilllo, A. J. Durrani, 1990 “Effect of transient high temperature on high-strength concrete”, ACI Materials Journal, Vol. 87, pp. 47-53.
[41]Y. N. Chen, G. F. Peng, M. Anson, 1999, “Residual strength and structure of high-strength concrete and normal strength concrete after exposure to high temperature”, ACI Cement and Concrete Composites, Vol. 21, pp. 23-27.
[42]林冠宏,2007,「混凝土於不同貯存環境溫度下對抵抗氯離子侵入能力之研究」,國立台灣海洋大學材料工程研究所碩士論文。