|
[1] N.H. ML. Brongersma, P. Nordlander Plasmon-induced hot carrier science and technology, Nature nanotechnology 10(1) (2015) 25-34. [2] G.C. X. Wu, G. Owens, D. Chu, H. Xu Photothermal materials: A key platform enabling highly efficient water evaporation driven by solar energy, Materials Today Energy 12 (2019) 277-296. [3] H.L. J. Liang, J. Yu, L. Zhou, J. Zhu Plasmon-enhanced solar vapor generation, Nanophotonics 8 (2019) 771-786. [4] H.R. AO. Govorov, Generating heat with metal nanoparticles, Nano today 2 (2007) 30-38. [5] L.Z. M. Gao, CK. Peh, GW. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production, Energy & Environmental Science 12 (2019) 841-864. [6] K.W. SY Tee, SS Goh, CP Teng, KY Tang, MD. Regulacio, Z Li, E Ye, Introduction to Photothermal Nanomaterials, (2022). [7] W. Gärtner, Photothermal effect in semiconductors, Physical Review 122 (1961) 419. [8] N.O. NS. Fuzil, NH. Alias, F. Marpani,Othman, HDI. Mohd , FI. Ahmad, JL. Woei, K. Li, TD. Kusworo, I. Ichinose A review on photothermal material and its usage in the development of photothermal membrane for sustainable clean water production, Desalination 517 (2021) 115259. [9] T.D. W. Shang, Solar steam generation: steam by thermal concentration, Nature Energy 1 (2016) 1-2. [10] A.U. O. Neumann, J. Day, S. Lal, P. Nordlander, NJ. Halas Solar vapor generation enabled by nanoparticles, ACS nano 7 (2013) 42-49. [11] G.N. P. Tao, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, T. Deng Solar-driven interfacial evaporation, Nature energy 3 (2018) 1031-1041. [12] J.H. J. Kim, S. Kim, SH. Cho, H. Choi, HY. Kim, YS. Lee, Interfacial Solar Evaporator-Physical Principles and Fabrication Methods, International Journal of Precision Engineering and Manufacturing-Green Technology 8 (2021) 1347-1367. [13] Y.F. A. Guo, G. Wang, X. Wang Diameter effect of gold nanoparticles on photothermal conversion for solar steam generation, RSC advances 7 (2017) 4815-4824. [14] T.C. M. Yang, J. Shi, J. Zhang, Y. Zhang, L. Wang Synergy of photothermal effect in integrated 0D natural melanin/2D reduced graphene oxide for effective solar steam generation and water purification, Colloids and Surfaces A: Physicochemical and Engineering Aspects 632 (2022) 127786. [15] X.W. Y. Lu, D. Fan, H. Yang, H. Xu, H. Min, X. Yang, Biomass derived Janus solar evaporator for synergic water evaporation and purification, Sustainable materials and technologies 25 (2020) e00180. [16] P.V.d.L. J. Vogtländer, H. Brezet, The sustainability of bamboo products for local and Western European applications. LCAs and land-use, Journal of Cleaner Production 18 (2010) 1260-1269. [17] N.Y. C. Sheng, Y. Yan, X. Shen, C. Jin, Z. Wang, Q. Sun Bamboo decorated with plasmonic nanoparticles for efficient solar steam generation, Applied Thermal Engineering 167 (2020) 114712. [18] P.Y. Y. Leow, PL. Chee, XJ. Loh, D. Kai Recycling of spent coffee grounds for useful extracts and green composites, RSC advances 11 (2021) 2682-2692. [19] J. McNutt, Spent coffee grounds: A review on current utilization, Journal of industrial and engineering chemistry 71 (2019) 78-88. [20] B.M. DR. Vardon, W. Zheng, K. Witkin, RL. Evangelista, Strathmann, J. Timothy, K. Rajagopalan, BK. Sharma, Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar, ACS Sustainable Chemistry & Engineering 1 (2013) 1286-1294. [21] L. Panzella, G. Gentile, G. D'Errico, N.F. Della Vecchia, M.E. Errico, A. Napolitano, C. Carfagna, M. d'Ischia, Atypical structural and π-electron features of a melanin polymer that lead to superior free-radical-scavenging properties, Angew. Chem. Int. Ed. 52 (2013) 12684. [22] K.A. Y. Liu, J. Liu, Deng, Mo, Y., L.L. He, Dopamine‐melanin colloidal nanospheres: an efficient near‐infrared photothermal therapeutic agent for in vivo cancer therapy, Advanced materials 25 (2013) 1353-1359. [23] H.S.K. M. Kim, M.A. Kim,, H.J.J. H. Ryu, C.M. Lee Thermohydrogel containing melanin for photothermal cancer therapy, Macromolecular bioscience 17 (2017). [24] M.D. Xi-Er. C, Hsiu-Wen. C, Green sustainable photothermal materials by spent coffee grounds, Journal of the Taiwan Institute of Chemical Engineers 10 (2022) 104259. [25] X.-E.C. Hsiu-Wen. C, Spent coffee grounds as potential green photothermal materials for biofilm elimination, Journal of Environmental Chemical Engineering 10(1) (2022) 107131. [26] H.H. X. Hu, Y. Hu, X. Lu, Y. Qin Novel bio-based composite phase change materials with reduced graphene oxide-functionalized spent coffee grounds for efficient solar-to-thermal energy storage, Solar Energy Materials and Solar Cells 219 (2021) 110790. [27] C.-L.W. C-F. Wang, S-W. Kuo, W-S. Hung, K-J. Lee, H-C. Tsai, C-J. Chang, J-Y. Lai Preparation of efficient photothermal materials from waste coffee grounds for solar evaporation and water purification, Scientific Reports 10 (2020) 1-10. [28] T.J. Y. Ma, A. Zhang, J. Cao Spent coffee ground-based interfacial solar steam generation, Journal of Material Cycles and Waste Management 23 (2021) 604-613. [29] S.A. H. Rahman, V. Utomo Tannins Extraction of Tea Leaves by Ultrasonic Method: Comparison with The Conventional Method, Jurnal Teknologi 8 (2020) 84-95. [30] B.J. I, Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, Materials characterization using nondestructive evaluation (NDE) methods, Elsevier2016, pp. 17-43. [31] M.E. B, Trygve.M, T, Atmospheric freeze-drying of calanus finmarchicus and its effects on proteolytic and lipolytic activities, 4 (2009) 1-9. [32] B. G, Structural analysis of merino wool, pashmina and angora fibers using analytical instruments like scanning electron microscope and infra-red spectroscopy, International Journal of Engineering Technology Science and Research 4 (2017) 2394-3386. [33] A.S. A, Marina, Gómez.F, Juan.C, Attenuated total reflectance infrared spectroscopy: A powerful method for the simultaneous study of structure and spatial orientation of lipids and membrane proteins, Biomedical Spectroscopy and Imaging 4 (2015) 159-170. [34] S.H. N. Aniza, M. Inayat, Thermogravimetric kinetic analysis of Malaysian poultry processing waste material under inert and oxidative atmospheres, Journal of Mechanical Engineering and Sciences 10 (2016) 1943-1955. [35] C.-J.K. Hsiu-Wen. C, Li-Heng. K, Guan-You. L, Pei-Yi. C, Polysaccharidic spent coffee grounds for silver nanoparticle immobilization as a green and highly efficient biocide, International journal of biological macromolecules 140 (2019) 168-176. [36] P.-W.A. P, Aleksandra. M, Łukasz. S, P.J.B, A, Standardization of methodology of light-to-heat conversion efficiency determination for colloidal nanoheaters, ACS applied materials & interfaces 13 (2021) 44556-44567. [37] G. Sennakesavan, L.D. M. Mostakhdemin, A. Seyfoddin, SJ. Fatihhi Acrylic acid/acrylamide based hydrogels and its properties-A review, Polymer Degradation and Stability 180 (2020) 109308. [38] J.H. K, Jaewoo. K, Seongheon. C, Seong Ho. C, Hanseul. K, Ho-Young. L, Yun. S, Interfacial Solar Evaporator-Physical Principles and Fabrication Methods, International Journal of Precision Engineering and Manufacturing-Green Technology 8 (2021) 1347-1367. [39] Z.F. M. Zeng, Preparation of sub-micrometer porous membrane from chitosan/polyethylene glycol semi-IPN, Journal of Membrane Science 245 (2004) 95-102. [40] J.T. LF. Ballesteros, SI. Mussatto Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin, Food and bioprocess technology 7 (2014) 3493-3503. [41] M.N. EF. Lessa, AR. Fajardo Chitosan/waste coffee-grounds composite: An efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water, Carbohydrate polymers 189 (2018) 257-266. [42] J.K. S.Kumar, Physiochemical, optical and biological activity of chitosan-chromone derivative for biomedical applications, International Journal of Molecular Sciences 13 (2012) 6102-6116. [43] P.D. J. Singh, Antibacterial and physiochemical behavior of prepared chitosan/pyridine-3, 5-di-carboxylic acid complex for biomedical applications, Journal of Macromolecular Science, Part A 48 (2011) 246-253. [44] T.Z. H. Bai, M. Cao Interfacial solar evaporation for water production: from structure design to reliable performance, Molecular Systems Design & Engineering 5 (2020) 419-432. [45] S.F. J. Palmer, J. Brooks Bacterial cell attachment, the beginning of a biofilm, Journal of Industrial Microbiology and Biotechnology 34 (2007) 577-588. [46] H.K. G O'Toole, R. Kolter Biofilm formation as microbial development, Annual review of microbiology 54 (2000) 49. [47] G.M. G Batoni, S Esin, Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria, Biochimica et Biophysica Acta (BBA)-Biomembranes 1858 (2016) 1044-1060. [48] M.O. C Vuong, Staphylococcus epidermidis infections, Microbes and infection 4 (2002) 481-489. [49] M.B. S. Zheng, A. Dhall, H-E. Kim, L. He, J. Heo, G. Hwang Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion, Frontiers in Bioengineering and Biotechnology 9 (2021) 643722. [50] W.N. HHM. Rijnaarts, J. Lyklema, Zehnder, JB. Alexander DLVO and steric contributions to bacterial deposition in media of different ionic strengths, Colloids and Surfaces B: Biointerfaces 14 (1999) 179-195. [51] H.V.D.M. B. Gottenbos, HJ. Busscher, DW. Grijpma, J. Feijen, Initial adhesion and surface growth of Pseudomonas aeruginosa on negatively and positively charged poly (methacrylates), Journal of Materials Science: Materials in Medicine 10 (1999) 853-855. [52] K.O. A. Terada, M. Nishikawa, S. Tsuneda, M. Hosomi The effect of surface charge property on Escherichia coli initial adhesion and subsequent biofilm formation, Biotechnology and bioengineering 109 (2012) 1745-1754. [53] S.T. M. Ueshima, S. Nakamura, K. Yamashita Manipulation of bacterial adhesion and proliferation by surface charges of electrically polarized hydroxyapatite, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 60 (2002) 578-584. [54] J.L. K. Song, SO. Choi, J. Kim Interaction of surface energy components between solid and liquid on wettability, and its application to textile anti-wetting finish, Polymers 11 (2019) 498. [55] K.S. A. Krasowska, How microorganisms use hydrophobicity and what does this mean for human needs?, Frontiers in cellular and infection microbiology 4 (2014) 112. [56] S.D. S. Naderizadeh, P. Picone, M. Di Carlo, R. Carzino, A. Athanassiou, lS. Bayer Bioresin-based superhydrophobic coatings with reduced bacterial adhesion, Journal of colloid and interface science 574 (2020) 20-32. [57] H.K. I. Yoda, M. Tomita, T. Shida, H. Horiuchi, H. Sakoda, M. Osaki, Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion, BMC microbiology 14 (2014) 1-7. [58] W.P. CML. Bollen, J. Van Eldere, E. Schepers, M. Quirynen, D. Van Steenberghe, The influence of abutment surface roughness on plaque accumulation and peri‐implant mucositis, Clinical oral implants research 7 (1996) 201-211. [59] S.L. R. Xing, JE. Ellingsen, S. Taxt‐Lamolle, HJ. Haugen The influence of surface nanoroughness, texture and chemistry of TiZr implant abutment on oral biofilm accumulation, Clinical oral implants research 26 (2015) 649-656. [60] D.S. S. Matalon, A. Meirowitz, Z. Ormianer The effect of aging on the roughness and bacterial adhesion of lithium Disilicate and Zirconia ceramics, Journal of Prosthodontics 30 (2021) 440-446. [61] S.A. S. Wu, A. Zogg, F. Zuber, K. Maniura-Weber, Q. Ren Role of the surface nanoscale roughness of stainless steel on bacterial adhesion and microcolony formation, ACS omega 3 (2018) 6456-6464. [62] E.T. SD. Puckett, T. Raimondo, TJ. Webster The relationship between the nanostructure of titanium surfaces and bacterial attachment, Biomaterials 31 (2010) 706-713. [63] K.N. K. Jindai, K. Masuda, T. Sagawa, H. Kojima, T. Shimizu, S. Shingubara, T. Ito Adhesion and bactericidal properties of nanostructured surfaces dependent on bacterial motility, RSC advances 10 (2020) 5673-5680. [64] S.W. J. Gutman, V. Freger, M. Herzberg Bacterial attachment and viscoelasticity: physicochemical and motility effects analyzed using quartz crystal microbalance with dissipation (QCM-D), Environmental science & technology 47 (2013) 398-404. [65] B. Bhushan, Biomimetics: lessons from nature–an overview, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367 (2009) 1445-1486. [66] M.S. C. Tamerler, Molecular biomimetics: nanotechnology and bionanotechnology using genetically engineered peptides, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367 (2009) 1705-1726. [67] X.W. H. Gao, H. Yao, S. Gorb, E. Arzt Mechanics of hierarchical adhesion structures of geckos, Mechanics of materials 37 (2005) 275-285. [68] L.J. X. Gao, Water-repellent legs of water striders, nature 432 (2004) 36-36. [69] B.B. K. Koch, W. Barthlott Multifunctional surface structures of plants: an inspiration for biomimetics, Progress in Materials science 54 (2009) 137-178. [70] Y.J. B. Bhushan, K. Koch, Micro-, nano-and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367 (2009) 1631-1672. [71] J.F. Z. Han, Z. Wang, Y. Wang, B. Li, Z. Mu, J. Zhang, S. Niu Long-term durability of superhydrophobic properties of butterfly wing scales after continuous contact with water, Colloids and Surfaces A: Physicochemical and Engineering Aspects 518 (2017) 139-144. [72] G.S. Y. Fang, TQ. Wang, Q. Cong, LQ. Ren Hydrophobicity mechanism of non-smooth pattern on surface of butterfly wing, Chinese Science Bulletin 52 (2007) 711-716. [73] C.N. W. Barthlott, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta 202 (1997) 1-8. [74] S.S. CD. Bandara, A.W. IO. Afara, T. Tesfamichael, K. Ostrikov, A. Oloyede Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli, ACS applied materials & interfaces 9 (2017) 6746-6760. [75] S.J. Y. Cao, L. Bowen, X. Tan, H. Liu, N. Rostami, J. Brown, NS. Jakubovics, J. Chen, Hierarchical rose petal surfaces delay the early-stage bacterial biofilm growth, Langmuir 35 (2019) 14670-14680. [76] A.K. K. Feld, CM. Nyborg, M. Salewski, JF. Steffensen, K. Berg-Sørensen Dermal denticles of three slowly swimming shark species: microscopy and flow visualization, Biomimetics 4 (2019) 38. [77] X.C. HW. Chien, WP. Tsai, M. Lee Inhibition of biofilm formation by rough shark skin-patterned surfaces, Colloids and Surfaces B: Biointerfaces 186 (2020) 110738. [78] S.Y. H, R.Li, Chaobo.Y, Lixin, The wettability and numerical model of different silicon microstructural surfaces, Applied Sciences 9 (2019) 566. [79] X.-Y.C. Hsiu-Wen. C, Wen-Pei, T, Poly (methyl methacrylate)/titanium dioxide (PMMA/TiO2) nanocomposite with shark-skin structure for preventing biofilm formation, Materials Letters 285 (2021) 129098. [80] L.C. KH. Cho, Fabrication of sticky and slippery superhydrophobic surfaces via spin-coating silica nanoparticles onto flat/patterned substrates, Nanotechnology 22 (2011) 445706. [81] F.E.-B. M Ö. Öztürk-Öncel, R. Rasier, M. Marcali, C. Elbuken, B. Garipcan Rose petal topography mimicked poly (dimethylsiloxane) substrates for enhanced corneal endothelial cell behavior, Materials Science and Engineering: C 126 (2021) 112147. [82] G.D. AG. Domel, JC. Weaver, M. Saadat, K. Bertoldi, GV. Lauder Hydrodynamic properties of biomimetic shark skin: effect of denticle size and swimming speed, Bioinspiration & biomimetics 13 (2018) 056014. [83] C. Dove, A descriptive and phylogenetic analysis of plumulaceous feather characters in Charadriiformes, Ornithological Monographs (2000) 1-163. [84] S.S. J. Lee, L. Joseph, J. Robertson Microscopic characteristics of the plumulaceous feathers of Australian birds: a preliminary analysis of taxonomic discrimination for forensic purposes, Australian Journal of Forensic Sciences 48 (2016) 421-444. [85] C.F.G. M. Werb, NC. Bach, S. Grumbein, SA. Sieber, M. Opitz, O. Lieleg Surface topology affects wetting behavior of Bacillus subtilis biofilms, npj Biofilms and Microbiomes 3 (2017) 1-10. [86] W.Z. N. Lu, Y. Weng, X. Chen, Y. Cheng, P. Zhou Fabrication of PDMS surfaces with micro patterns and the effect of pattern sizes on bacteria adhesion, Food control 68 (2016) 344-351.
|