[1]Guo, C., Li, G., Li, S., Hu. X. G., Lu, H. G., Li, X. G., Xu, Z., Chen, Y. H., Li, Q., Q., Lu, J., Zhu, Q. (2022). Additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition. Nano Materials Science, 53-77.
[2]Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172-196.
[3]Zhu, Y., Zhang, K., Meng, Z., Zhang, K., Hodgson, P., Birbilis, N., Huang, A. (2022). Ultrastrong nanotwinned titanium alloys through additive manufacturing. Nature Materials, 1-5.
[4]Guo, X., Li, H., Yu, D., & Tian, Q. (2022). Molten salt electrolysis of spent nickel-based superalloys with liquid cathode for the selective separation of nickel. Separation and Purification Technology, 122168.
[5]Chi, Z., Ren, S., Qiao, J., Qu, J., Yang, C., Xie, Z., Meng, F. (2022). Failure behaviors and processing maps with failure domains for hot compression of a powder metallurgy Ni-based superalloy. Journal of Materials Research and Technology, 20, 3860-3874.
[6]Wang, R., Wang, M., Gao, S., Wang, Z., Xin, T., Liu, M., & Bao, Y. (2022). Compound purification of nickel base superalloy cutting waste through special cleaning agent attached to ultrasonic stirring. Journal of Cleaner Production, 134548.
[7]Min, S., Liu, H., Yang, M., Zhang, H., Hou, J., Zhang, K., Huang, A. (2022). High-temperature oxidation performance of Ni-based GH3536 superalloy fabricated by laser powder bed fusion. npj Materials Degradation, 6(1), 1-12.
[8]Pinz, M., Weber, G., Stinville, J. C., Pollock, T., & Ghosh, S. (2022). Data-driven Bayesian model-based prediction of fatigue crack nucleation in Ni-based superalloys. npj Computational Materials, 8(1), 1-15.
[9]Chen, Z., Wu, M., Pei, Y., Li, S., & Gong, S. (2021). Study on abnormal hot corrosion behavior of nickel-based single-crystal superalloy at 900° C after drilling. npj Materials Degradation, 5(1), 1-10.
[10]Chen, E., Tamm, A., Wang, T., Epler, M. E., Asta, M., & Frolov, T. (2022). Modeling antiphase boundary energies of Ni3Al-based alloys using automated density functional theory and machine learning. npj Computational Materials, 8(1), 1-10.
[11]Smith, T. M., Zarkevich, N. A., Egan, A. J., Stuckner, J., Gabb, T. P., Lawson, J. W., & Mills, M. J. (2021). Utilizing local phase transformation strengthening for nickel-base superalloys. Communications Materials, 2(1), 1-9.
[12]Li, H., Zong, H., Li, S., Jin, S., Chen, Y., Cabral, M. J., Sun, J. (2022). Uniting tensile ductility with ultrahigh strength via composition undulation. Nature, 604(7905), 273-279.
[13]Yang, Y., Chen, T., Tan, L., Poplawsky, J. D., An, K., Wang, Y., George, E. P. (2021). Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy. Nature, 595(7866), 245-249.
[14]Zhang, R., Wang, C., Zou, P., Lin, R., Ma, L., Yin, L., Xin, H. L. (2022). Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature, 610(7930), 67-73.
[15]Han, L., Maccari, F., Souza Filho, I. R., Peter, N. J., Wei, Y., Gault, B., Raabe, D. (2022). A mechanically strong and ductile soft magnet with extremely low coercivity. Nature, 608(7922), 310-316.
[16]Ren, J., Zhang, Y., Zhao, D., Chen, Y., Guan, S., Liu, Y., Chen, W. (2022). Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing. Nature, 608(7921), 62-68.
[17]An, X. (2021). Structural hierarchy defeats alloy cracking. Science, 373(6557), 857-858.
[18]Wang, F., Balbus, G. H., Xu, S., Su, Y., Shin, J., Rottmann, P. F., Gianola, D. S. (2020). Multiplicity of dislocation pathways in a refractory multiprincipal element alloy. Science, 370(6512), 95-101.
[19]Yang, T., Zhao, Y. L., Tong, Y., Jiao, Z. B., Wei, J., Cai, J. X., Liu, C. T. (2018). Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science, 362(6417), 933-937.
[20]Cairney, J. (2020). A rival to superalloys at high temperatures. Science, 370(6512), 37-38.
[21]Caccia, M., Tabandeh-Khorshid, M., Itskos, G., Strayer, A. R., Caldwell, A. S., Pidaparti, S., Sandhage, K. H. (2018). Ceramic–metal composites for heat exchangers in concentrated solar power plants. Nature, 562(7727), 406-409.
[22]Yang, Y. Q., Zhao, Y. C., Wen, Z. X., Lu, G. X., Pei, H. Q., & Yue, Z. F. (2022). Synergistic effect of multiple molten salts on hot corrosion behaviour of Ni-based single crystal superalloy. Corrosion Science, 110381.
[23]Liu, C. T., Xu, X. G., Zhang, D., Luo, F., & Zhu, L. K. (2022). Effect of ultrasonic vibration on forming force and forming quality in micro-punching with a flexible punch. Scientific Reports, 12(1), 1-9.
[24]Ge, J., Ding, B., Hou, S., Luo, M., Nam, D., Duan, H., ... & Li, H. (2021). Rapid fabrication of complex nanostructures using room-temperature ultrasonic nanoimprinting. Nature Communications, 12(1), 1-8.
[25]Xie, Z., Chen, F., & He, W. (2022). The effects of ultrasonic vibration on riveting quality. Scientific Reports, 12(1), 1-13.
[26]Chen, P., Liao, W. B., Liu, L. H., Luo, F., Wu, X. Y., Li, P. J., ... & Liu, Z. Y. (2018). Ultrafast consolidation of bulk nanocrystalline titanium alloy through ultrasonic vibration. Scientific Reports, 8(1), 1-9.
[27]Ruirun, C., Deshuang, Z., Tengfei, M., Hongsheng, D., Yanqing, S., Jingjie, G., & Hengzhi, F. (2017). Effects of ultrasonic vibration on the microstructure and mechanical properties of high alloying TiAl. Scientific Reports, 7(1), 1-15.
[28]Li, L., Lyu, G. J., Li, H., Fan, C., Wen, W., Lin, H., ... & Wang, W. (2023). Ultra-fast amorphization of crystalline alloys by ultrasonic vibrations. Journal of Materials Science & Technology, 142, 76-88.
[29]Shi, S., Li, Y., Ngo-Dinh, B. N., Markmann, J., & Weissmüller, J. (2021). Scaling behavior of stiffness and strength of hierarchical network nanomaterials. Science, 371(6533), 1026-1033.
[30]Jiang, S., Wang, H., Wu, Y., Liu, X., Chen, H., Yao, M., Lu, Z. (2017). Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature, 544(7651), 460-464.
[31]Min, S., Liu, H., Yang, M., Zhang, H., Hou, J., Zhang, K., Huang, A. (2022). High-temperature oxidation performance of Ni-based GH3536 superalloy fabricated by laser powder bed fusion. npj Materials Degradation, 6(1), 1-12.
[32]Sato, J., Omori, T., Oikawa, K., Ohnuma, I., Kainuma, R., & Ishida, K. (2006). Cobalt-base high-temperature alloys. Science, 312(5770), 90-91.
[33]Liu, C., Ji, Y., Tang, J., Otsuka, K., Wang, Y., Hou, M., Ren, X. (2022). A lightweight strain glass alloy showing nearly temperature-independent low modulus and high strength. Nature Materials, 21(9), 1003-1007.
[34]Ritchie, R. O., & Zheng, X. R. (2022). Growing designability in structural materials. Nature Materials, 1-3.
[35]Zhang, R., Zhao, S., Ding, J., Chong, Y., Jia, T., Ophus, C., Minor, A. M. (2020). Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature, 581(7808), 283-287.
[36]Logé, R. E. (2022). Nanotwinning-assisted recrystallization. Nature Materials, 21(7), 738-739.
[37]Tiamiyu, A. A., Pang, E. L., Chen, X., LeBeau, J. M., Nelson, K. A., & Schuh, C. A. (2022). Nanotwinning-assisted dynamic recrystallization at high strains and strain rates. Nature Materials, 1-9.
[38]Zhang, T., Huang, Z., Yang, T., Kong, H., Luan, J., Wang, A., Liu, C. T. (2021). In situ design of advanced titanium alloy with concentration modulations by additive manufacturing. Science, 374(6566), 478-482.
[39]Stinville, J. C., Charpagne, M. A., Cervellon, A., Hemery, S., Wang, F., Callahan, P. G., Pollock, T. M. (2022). On the origins of fatigue strength in crystalline metallic materials. Science, 377(6610), 1065-1071.
[40]Omar, M. M., & El-Awady, J. A. (2022). Foreseeing metal failure from its inception. Science, 377(6610), 1047-1048.
[41]Yeh, J. W. (2021). Strength through high slip-plane density. Science, 374(6570), 940-941.
[42]Pan, Q., Zhang, L., Feng, R., Lu, Q., An, K., Chuang, A. C., Lu, L. (2021). Gradient cell–structured high-entropy alloy with exceptional strength and ductility. Science, 374(6570), 984-989.
[43]Zhao, S., Zhang, R., Yu, Q., Ell, J., Ritchie, R. O., & Minor, A. M. (2021). Cryoforged nanotwinned titanium with ultrahigh strength and ductility. Science, 373(6561), 1363-1368.
[44]Shi, P., Li, R., Li, Y., Wen, Y., Zhong, Y., Ren, W., Wang, Y. D. (2021). Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science, 373(6557), 912-918.
[45]An, X. (2021). Structural hierarchy defeats alloy cracking. Science, 373(6557), 857-858
[46]Ming, K., Zhu, Z., Zhu, W., Fang, B., Wei, B., Liaw, P. K., Zheng, S. (2022). Enhancing strength and ductility via crystalline-amorphous nanoarchitectures in TiZr-based alloys. Science advances, 8(10), eabm2884.
[47]Edwards, T. E., Maeder, X., Ast, J., Berger, L., & Michler, J. (2022). Mapping pure plastic strains against locally applied stress: Revealing toughening plasticity. Science advances, 8(30), eabo5735.
[48]Xu, T., Wang, W., Jiang, H., & He, G. (2022). Study on micro crack propagation mechanism of ferrite–pearlite gas transmission pipeline steel with lamellar structure. Scientific Reports, 12(1), 1-26
[49]Li, Z., Zhang, Y., Zhang, Z. (2022). A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites. Nature Communications, 13(1), 1-13.
[50]Utt, D., Lee, S., Xing, Y., Jeong, H., Stukowski, A., Oh, S. H., Albe, K. (2022). The origin of jerky dislocation motion in high-entropy alloys. Nature Communications, 13(1), 1-11.
[51]Chu, S., Liu, P., Zhang, Y., Wang, X., Song, S., Zhu, T., Chen, M. (2022). In situ atomic-scale observation of dislocation climb and grain boundary evolution in nanostructured metal. Nature Communications, 13(1), 1-8.
[52]Fourmont, J., Blanc, W., Guichaoua, D., & Chaussedent, S. (2022). Phase-separated Ca and Mg-based nanoparticles in SiO2 glass investigated by molecular dynamics simulations. Scientific Reports, 12(1), 1-13.
[53]Nasrin, S. R., Ganser, C., Nishikawa, S., Kabir, A. M. R., Sada, K., Yamashita, T., Kakugo, A. (2021). Deformation of microtubules regulates translocation dynamics of kinesin. Science Advances, 7(42), eabf2211.
[54]Min, H., Pengcheng Zhai, Guodong Li, Qi An, Sergey I. Morozov, Wenjuan Li, Qingjie Zhang, William A. Goddard,Nanotwin-induced ductile mechanism in thermoelectric semiconductor PbTe,Matter,2022,Volume 5, Issue 6,Pages 1839-1852.
[55]Huang, B., Li, G., Xiao, C., Duan, B., Li, W., Zhai, P., & Goddard III, W. A. (2022). Compression Induced Deformation Twinning Evolution in Liquid-Like Cu2Se. ACS Applied Materials & Interfaces, 14(16), 18671-18681.
[56]Xianfa Li, Yongjun Shi, Jiaxian Chen, Junyu An, Qin Wang,Research on solid-phase sintering mechanism and mechanical properties of Fe9.5Co (at%) elastocaloric refrigeration alloy through molecular dynamics simulation, Journal of Materials Research and Technology, 2022, Volume 19, Pages 2314-2329.
[57]Tatsumi, H., Kao, C. R., & Nishikawa, H. (2022). Solid-state bonding behavior between surface-nanostructured Cu and Au: a molecular dynamics simulation. Scientific Reports, 12(1), 1-12.
[58]Doan, D. Q., Fang, T. H., & Chen, T. H. (2022). Nanomachining characteristics of textured polycrystalline NiFeCo alloy using molecular dynamics. Journal of Manufacturing Processes, 74, 423-440.
[59]Doan, D. Q., Fang, T. H., & Chen, T. H. (2021). Machining mechanism and deformation behavior of high-entropy alloy under elliptical vibration cutting. Intermetallics, 131, 107079.
[60]Jacobson, D. W., & Thompson, G. B. (2022). Revisting Lennard Jones, Morse, and NM potentials for metals. Computational Materials Science, 205, 111206.
[61]Fang, T. H. & Wu, J. H. (2008). Molecular dynamics simulations on nanoindentation mechanisms of multilayered films. Computational Materials Science, 43(4), 785-790.
[62]Zhao, L., Zhang, J., Zhang, J., & Hartmaier, A. (2021). Atomistic investigation of machinability of monocrystalline 3C–SiC in elliptical vibration-assisted diamond cutting. Ceramics International, 47(2), 2358-2366.
[63]Chen, X., Tang, J., Shao, W., Hu, B., & Ye, J. (2022). An Analytical and Experimental Study on Cutting Characteristics and Transient Cutting Force Modeling in Feed Directional Ultrasonic Vibration-Assisted Cutting of High Strength Alloys. Materials, 15(20), 7388.
[64]Hua, D., Wang, W., Luo, D., Zhou, Q., Li, S., Shi, J., & Wang, H. (2022). Molecular dynamics simulation of the tribological performance of amorphous/amorphous nano-laminates. Journal of Materials Science & Technology, 105, 226-236.
[65]Ding, J., Li, Z., Wang, W., Ma, Y., Liu, W., & Liang, C. (2022). Evaluation of structural and mechanical strength of symmetric tilt interface in W/Fe composite laminate using molecular dynamics. Journal of Physics and Chemistry of Solids, 168, 110800.
[66]Hao, J., Jing, X., Liu, B., Wang, Y., Wang, Z., He, W., & Feng, L. (2022). Molecular dynamics simulations on shock induced plasticity and stacking fault of coherent {001} Ni/Ni3Al laminate composite. Journal of Materials Research and Technology, 18, 4930-4945.
[67]Jing, H. Y., Li, M. F., Wang, P. W., Malomo, B., & Yang, L. (2021). Self-healing mechanisms of ZrCu nanocrystalline/amorphous laminated alloy under irradiation. Materialia, 20, 101227.
[68]Wang, S., Liu, M., Araby, S., Wang, X., Abdelsalam, A. A., Xue, H., & Meng, Q. (2023). Reinforcing interlaminar interface of carbon fiber reinforced metal laminates by graphene. Composite Structures, 311, 116814.
[69]J. H. Irving, and J. G. Kirkwood. The Statistical Mechanical Theory of Transport Processes. Iv. The Equations of Hydrodynamics. The Journal of Chemical Physics. 18 (1950) 817-829
[70]陸裕昇,“分子動力學模擬鎳鈷鉻中熵合金之機械與加工特性,” 國立高雄科技大學碩士論文, 2021。[71]Verlet, L. (1967). Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 159(1), 98.
[72]Dodson, B. W. (1987). Development of a many-body Tersoff-type potential for silicon. Physical Review B, 35(6), 2795.
[73]Bader, R. F., & Essén, H. (1984). The characterization of atomic interactions. The Journal of Chemical Physics, 80(5), 1943-1960.
[74]Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182-7190.
[75]Rapaport, D. C., & Rapaport, D. C. R. (2004). The art of molecular dynamics simulation. Cambridge university press, 15-16.
[76]Gear, C. W. (1971). The automatic integration of ordinary differential equations. Communications of the ACM, 14(3), 176-179.
[77]D. Fincham, and D. M. Heyes. Integration algorithms in molecular dynamics. CCP5 Quarterly. 6 (1982) 4-10.
[78]洪崇瑋,“二維石墨炔機械與熱傳導特性之研究,” 國立高雄科技大學碩士論文, 2019[79]Verlet, L. (1967). Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 159(1), 98.
[80]Doan, D. Q., Chu, V. T., Tran, A. S., Pham, A. V., Vu, H. S., Nguyen, T. N., & Pham, T. T. (2023). The role of interfaces on mechanical property and wear behavior of amorphous/amorphous nanomultilayers. Journal of Non-Crystalline Solids, 605, 122152.
[81]Doan, D. Q., & Fang, T. H. (2023). Deformation behavior and strengthening mechanism of CuTa/CuTa amorphous/amorphous nanomultilayers. Journal of Non-Crystalline Solids, 600, 121993.
[82]Doan, D. Q., Fang, T. H., & Chen, T. H. (2022). Nanomachining characteristics of textured polycrystalline NiFeCo alloy using molecular dynamics. Journal of Manufacturing Processes, 74, 423-440.
[83]Doan, D. Q., Fang, T. H., & Chen, T. H. (2021). Machining mechanism and deformation behavior of high-entropy alloy under elliptical vibration cutting. Intermetallics, 131, 107079.