|
[1] Tiraferri A., Yip N.Y., Phillip W.A., Schiffman J.D., Elimelech M. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. Journal of Membrane Science 2011;367:340-52. [2] Awad A.M., Jalab R., Minier-Matar J., Adham S., Nasser M.S., Judd S.J. The status of forward osmosis technology implementation. Desalination 2019;461:10-21. [3] Nollet J.A. Leçons de physique expérimentale: Durand; 1784. [4] Loeb S. Energy production at the Dead Sea by pressure-retarded osmosis: challenge or chimera? Desalination 1998;120:247-62. [5] Nicoll P.G. Forward osmosis—A brief introduction. Proceedings of the international desalination association world congress on desalination and water reuse, Tianjin, China2013. p. 20-5. [6] Klaysom C., Cath T.Y., Depuydt T., Vankelecom I.F. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply. Chemical society reviews 2013;42:6959-89. [7] Jung D.H., Lee J., Kim D.Y., Lee Y.G., Park M., Lee S., et al. Simulation of forward osmosis membrane process: Effect of membrane orientation and flow direction of feed and draw solutions. Desalination 2011;277:83-91. [8] McCutcheon J.R., McGinnis R.L., Elimelech M. A novel ammonia—carbon dioxide forward (direct) osmosis desalination process. Desalination 2005;174:1-11. [9] Khaydarov R.A., Khaydarov R.R. Solar powered direct osmosis desalination. Desalination 2007;217:225-32. [10] Ling M.M., Chung T.-S. Desalination process using super hydrophilic nanoparticles via forward osmosis integrated with ultrafiltration regeneration. Desalination 2011;278:194-202. [11] Zhao S., Zou L., Mulcahy D. Brackish water desalination by a hybrid forward osmosis–nanofiltration system using divalent draw solute. Desalination 2012;284:175-81. [12] Cath T.Y., Hancock N.T., Lundin C.D., Hoppe-Jones C., Drewes J.E. A multi-barrier osmotic dilution process for simultaneous desalination and purification of impaired water. Journal of Membrane Science 2010;362:417-26. [13] Votta F. Concentration of Industial Waste by Direct Osmosis. 1974. [14] Anderson D.K. Concentration of dilute industrial wastes by Direct osmosis. 1977. [15] Cartinella J.L., Cath T.Y., Flynn M.T., Miller G.C., Hunter K.W., Childress A.E. Removal of Natural Steroid Hormones from Wastewater Using Membrane Contactor Processes. Environmental Science & Technology 2006;40:7381-6. [16] Holloway R.W., Childress A.E., Dennett K.E., Cath T.Y. Forward osmosis for concentration of anaerobic digester centrate. Water Research 2007;41:4005-14. [17] Cornelissen E.R., Harmsen D., de Korte K.F., Ruiken C.J., Qin J.-J., Oo H., et al. Membrane fouling and process performance of forward osmosis membranes on activated sludge. Journal of Membrane Science 2008;319:158-68. [18] Xiao D., Tang C.Y., Zhang J., Lay W.C.L., Wang R., Fane A.G. Modeling salt accumulation in osmotic membrane bioreactors: Implications for FO membrane selection and system operation. Journal of Membrane Science 2011;366:314-24. [19] Cornelissen E.R., Harmsen D., Beerendonk E.F., Qin J.J., Oo H., de Korte K.F., et al. The innovative Osmotic Membrane Bioreactor (OMBR) for reuse of wastewater. Water Science and Technology 2011;63:1557-65. [20] Achilli A., Cath T.Y., Marchand E.A., Childress A.E. The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes. Desalination 2009;239:10-21. [21] Alkhudhiri A., Darwish N., Hilal N. Membrane distillation: A comprehensive review. Desalination 2012;287:2-18. [22] Xie M., Nghiem L.D., Price W.E., Elimelech M. A Forward Osmosis–Membrane Distillation Hybrid Process for Direct Sewer Mining: System Performance and Limitations. Environmental Science & Technology 2013;47:13486-93. [23] Zhang Y., Pinoy L., Meesschaert B., Van der Bruggen B. A Natural Driven Membrane Process for Brackish and Wastewater Treatment: Photovoltaic Powered ED and FO Hybrid System. Environmental Science & Technology 2013;47:10548-55. [24] Catalyx. Forward osmosis for recycling dye wastewater. Filtration and Separation 2009;46(3):14. [25] Li Z., Valladares Linares R., Abu-Ghdaib M., Zhan T., Yangali-Quintanilla V., Amy G. Osmotically driven membrane process for the management of urban runoff in coastal regions. Water Research 2014;48:200-9. [26] Valladares Linares R., Li Z., Sarp S., Bucs S.S., Amy G., Vrouwenvelder J.S. Forward osmosis niches in seawater desalination and wastewater reuse. Water Research 2014;66:122-39. [27] Duong P.H.H., Chung T.-S. Application of thin film composite membranes with forward osmosis technology for the separation of emulsified oil–water. Journal of Membrane Science 2014;452:117-26. [28] Petrotos K.B., Lazarides H.N. Osmotic concentration of liquid foods. Journal of Food Engineering 2001;49:201-6. [29] Santus G., Baker R.W. Osmotic drug delivery: a review of the patent literature. Journal of Controlled Release 1995;35:1-21. [30] Thombre A.G., Cardinal J.R., DeNoto A.R., Herbig S.M., Smith K.L. Asymmetric membrane capsules for osmotic drug delivery: I. Development of a manufacturing process. Journal of Controlled Release 1999;57:55-64. [31] Thombre A.G., Cardinal J.R., DeNoto A.R., Gibbes D.C. Asymmetric membrane capsules for osmotic drug delivery II. In vitro and in vivo drug release performance. Journal of Controlled Release 1999;57:65-73. [32] Lin Y.-K., Ho H.-O. Investigations on the drug releasing mechanism from an asymmetric membrane-coated capsule with an in situ formed delivery orifice. Journal of Controlled Release 2003;89:57-69. [33] Herbig S.M., Cardinal J.R., Korsmeyer R.W., Smith K.L. Asymmetric-membrane tablet coatings for osmotic drug delivery. Journal of Controlled Release 1995;35:127-36. [34] Nayak C.A., Rastogi N.K. Forward osmosis for the concentration of anthocyanin from Garcinia indica Choisy. Separation and Purification Technology 2010;71:144-51. [35] Wang K.Y., Teoh M.M., Nugroho A., Chung T.-S. Integrated forward osmosis–membrane distillation (FO–MD) hybrid system for the concentration of protein solutions. Chemical Engineering Science 2011;66:2421-30. [36] Yang Q., Wang K.Y., Chung T.-S. A novel dual-layer forward osmosis membrane for protein enrichment and concentration. Separation and Purification Technology 2009;69:269-74. [37] Subramani A., Jacangelo J.G. Emerging desalination technologies for water treatment: A critical review. Water Research 2015;75:164-87. [38] Toy L., Choi Y.C., Hendren Z., Kim G.D. Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse. United States2017. [39] Hickenbottom K.L., Hancock N.T., Hutchings N.R., Appleton E.W., Beaudry E.G., Xu P., et al. Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations. Desalination 2013;312:60-6. [40] Cath T.Y., Childress A.E., Elimelech M. Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science 2006;281:70-87. [41] Wang K.Y., Chung T.-S., Amy G. Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization. AIChE Journal 2012;58:770-81. [42] Widjojo N., Chung T.-S., Weber M., Maletzko C., Warzelhan V. The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes. Journal of Membrane Science 2011;383:214-23. [43] Li X., Wang K.Y., Helmer B., Chung T.-S. Thin-Film Composite Membranes and Formation Mechanism of Thin-Film Layers on Hydrophilic Cellulose Acetate Propionate Substrates for Forward Osmosis Processes. Industrial & Engineering Chemistry Research 2012;51:10039-50. [44] Huang L., McCutcheon J.R. Impact of support layer pore size on performance of thin film composite membranes for forward osmosis. Journal of Membrane Science 2015;483:25-33. [45] Lu X., Arias Chavez L.H., Romero-Vargas Castrillón S., Ma J., Elimelech M. Influence of Active Layer and Support Layer Surface Structures on Organic Fouling Propensity of Thin-Film Composite Forward Osmosis Membranes. Environmental Science & Technology 2015;49:1436-44. [46] Cho Y.H., Han J., Han S., Guiver M.D., Park H.B. Polyamide thin-film composite membranes based on carboxylated polysulfone microporous support membranes for forward osmosis. Journal of Membrane Science 2013;445:220-7. [47] Sukitpaneenit P., Chung T.-S. High Performance Thin-Film Composite Forward Osmosis Hollow Fiber Membranes with Macrovoid-Free and Highly Porous Structure for Sustainable Water Production. Environmental Science & Technology 2012;46:7358-65. [48] Peng N., Widjojo N., Sukitpaneenit P., Teoh M.M., Lipscomb G.G., Chung T.-S., et al. Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future. Progress in Polymer Science 2012;37:1401-24. [49] Wei J., Qiu C., Tang C.Y., Wang R., Fane A.G. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes. Journal of Membrane Science 2011;372:292-302. [50] Kravath R.E., Davis J.A. Desalination of sea water by direct osmosis. Desalination 1975;16:151-5. [51] Kessler J.O., Moody C.D. Drinking water from sea water by forward osmosis. Desalination 1976;18:297-306. [52] Moody C.D., Kessler J.O. Forward osmosis extractors. Desalination 1976;18:283-95. [53] Achilli A., Cath T.Y., Childress A.E. Selection of inorganic-based draw solutions for forward osmosis applications. Journal of Membrane Science 2010;364:233-41. [54] Su J., Chung T.-S., Helmer B.J., de Wit J.S. Understanding of low osmotic efficiency in forward osmosis: Experiments and modeling. Desalination 2013;313:156-65. [55] Benavides S., Oloriz A.S., Phillip W.A. Forward Osmosis Processes in the Limit of Osmotic Equilibrium. Industrial & Engineering Chemistry Research 2015;54:480-90. [56] Yong J.S., Phillip W.A., Elimelech M. Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes. Journal of Membrane Science 2012;392-393:9-17. [57] Kim B., Lee S., Hong S. A novel analysis of reverse draw and feed solute fluxes in forward osmosis membrane process. Desalination 2014;352:128-35. [58] Zhao P., Yue Q., Gao B., Kong J., Rong H., Liu P., et al. Influence of different ion types and membrane orientations on the forward osmosis performance. Desalination 2014;344:123-8. [59] Ge Q., Su J., Amy G.L., Chung T.-S. Exploration of polyelectrolytes as draw solutes in forward osmosis processes. Water Research 2012;46:1318-26. [60] Tian E., Hu C., Qin Y., Ren Y., Wang X., Wang X., et al. A study of poly (sodium 4-styrenesulfonate) as draw solute in forward osmosis. Desalination 2015;360:130-7. [61] Gwak G., Jung B., Han S., Hong S. Evaluation of poly (aspartic acid sodium salt) as a draw solute for forward osmosis. Water Research 2015;80:294-305. [62] Ou R., Wang Y., Wang H., Xu T. Thermo-sensitive polyelectrolytes as draw solutions in forward osmosis process. Desalination 2013;318:48-55. [63] Zhao D., Wang P., Zhao Q., Chen N., Lu X. Thermoresponsive copolymer-based draw solution for seawater desalination in a combined process of forward osmosis and membrane distillation. Desalination 2014;348:26-32. [64] Sarp S., Lee S., Park K., Park M., Kim J.H., Cho J. Using macromolecules as osmotically active compounds in osmosis followed by filtration (OF) system. Desalination and Water Treatment 2012;43:131-7. [65] Jun B.-M., Nguyen T.P.N., Ahn S.-H., Kim I.-C., Kwon Y.-N. The application of polyethyleneimine draw solution in a combined forward osmosis/nanofiltration system. Journal of Applied Polymer Science 2015;132. [66] Zhao P., Gao B., Yue Q., Kong J., Shon H.K., Liu P., et al. Explore the forward osmosis performance using hydrolyzed polyacrylamide as draw solute for dye wastewater reclamation in the long-term process. Chemical Engineering Journal 2015;273:316-24. [67] Kim J.-j., Chung J.-S., Kang H., Yu Y.A., Choi W.J., Kim H.J., et al. Thermo-responsive copolymers with ionic group as novel draw solutes for forward osmosis processes. Macromolecular Research 2014;22:963-70. [68] Zhao D., Chen S., Wang P., Zhao Q., Lu X. A Dendrimer-Based Forward Osmosis Draw Solute for Seawater Desalination. Industrial & Engineering Chemistry Research 2014;53:16170-5. [69] Hobson L.J., Feast W.J. Poly(amidoamine) hyperbranched systems: synthesis, structure and characterization. Polymer 1999;40:1279-97. [70] Cai Y., Hu X.M. A critical review on draw solutes development for forward osmosis. Desalination 2016;391:16-29. [71] Lopes C.N., Petrus J.C.C., Riella H.G. Color and COD retention by nanofiltration membranes. Desalination 2005;172:77-83. [72] Akbari A., Remigy J.C., Aptel P. Treatment of textile dye effluent using a polyamide-based nanofiltration membrane. Chemical Engineering and Processing: Process Intensification 2002;41:601-9. [73] Van der Bruggen B., Cornelis G., Vandecasteele C., Devreese I. Fouling of nanofiltration and ultrafiltration membranes applied for wastewater regeneration in the textile industry. Desalination 2005;175:111-9. [74] Tang C., Chen V. Nanofiltration of textile wastewater for water reuse. Desalination 2002;143:11-20. [75] D'Haese A., Le-Clech P., Van Nevel S., Verbeken K., Cornelissen E.R., Khan S.J., et al. Trace organic solutes in closed-loop forward osmosis applications: Influence of membrane fouling and modeling of solute build-up. Water Research 2013;47:5232-44. [76] Hancock N.T., Xu P., Heil D.M., Bellona C., Cath T.Y. Comprehensive Bench- and Pilot-Scale Investigation of Trace Organic Compounds Rejection by Forward Osmosis. Environmental Science & Technology 2011;45:8483-90. [77] Park C.M., Chu K.H., Her N., Jang M., Baalousha M., Heo J., et al. Occurrence and Removal of Engineered Nanoparticles in Drinking Water Treatment and Wastewater Treatment Processes. Separation & Purification Reviews 2017;46:255-72. [78] McCutcheon J.R., Elimelech M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. Journal of Membrane Science 2006;284:237-47. [79] McCutcheon J.R., McGinnis R.L., Elimelech M. Desalination by ammonia–carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance. Journal of Membrane Science 2006;278:114-23. [80] Sotto A., Rashed A., Zhang R.-X., Martínez A., Braken L., Luis P., et al. Improved membrane structures for seawater desalination by studying the influence of sublayers. Desalination 2012;287:317-25. [81] Zhang R.-X., Vanneste J., Poelmans L., Sotto A., Wang X.-L., Van der Bruggen B. Effect of the manufacturing conditions on the structure and performance of thin-film composite membranes. Journal of Applied Polymer Science 2012;125:3755-69. [82] Maruf S.H., Greenberg A.R., Pellegrino J., Ding Y. Fabrication and characterization of a surface-patterned thin film composite membrane. Journal of Membrane Science 2014;452:11-9. [83] Pendergast M.T.M., Nygaard J.M., Ghosh A.K., Hoek E.M.V. Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination 2010;261:255-63. [84] Chuang W.Y., Young T.H., Chiu W.Y., Lin C.Y. The effect of polymeric additives on the structure and permeability of poly(vinyl alcohol) asymmetric membranes. Polymer 2000;41:5633-41. [85] Lafreniere L.Y., Talbot F.D.F., Matsuura T., Sourirajan S. Effect of poly(vinylpyrrolidone) additive on the performance of poly(ether sulfone) ultrafiltration membranes. Industrial & Engineering Chemistry Research 1987;26:2385-9. [86] Pendergast M.M., Ghosh A.K., Hoek E.M.V. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes. Desalination 2013;308:180-5. [87] Kim E.-S., Hwang G., Gamal El-Din M., Liu Y. Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. Journal of Membrane Science 2012;394-395:37-48. [88] Guillen G.R., Pan Y., Li M., Hoek E.M.V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Industrial & Engineering Chemistry Research 2011;50:3798-817. [89] Fontananova E., Jansen J.C., Cristiano A., Curcio E., Drioli E. Effect of additives in the casting solution on the formation of PVDF membranes. Desalination 2006;192:190-7. [90] Lee H.J., Won J., Lee H., Kang Y.S. Solution properties of poly(amic acid)–NMP containing LiCl and their effects on membrane morphologies. Journal of Membrane Science 2002;196:267-77. [91] Saljoughi E., Amirilargani M., Mohammadi T. Effect of poly(vinyl pyrrolidone) concentration and coagulation bath temperature on the morphology, permeability, and thermal stability of asymmetric cellulose acetate membranes. Journal of Applied Polymer Science 2009;111:2537-44. [92] Nguyen Q.T., Alaoui O.T., Yang H., Mbareck C. Dry-cast process for synthetic microporous membranes: Physico-chemical analyses through morphological studies. Journal of Membrane Science 2010;358:13-25. [93] Hermans S., Mariën H., Dom E., Bernstein R., Vankelecom I.F.J. Simplified synthesis route for interfacially polymerized polyamide membranes. Journal of Membrane Science 2014;451:148-56. [94] Ali M.E.A., Wang L., Wang X., Feng X. Thin film composite membranes embedded with graphene oxide for water desalination. Desalination 2016;386:67-76. [95] Ghosh A.K., Jeong B.-H., Huang X., Hoek E.M.V. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. Journal of Membrane Science 2008;311:34-45. [96] Khorshidi B., Thundat T., Fleck B.A., Sadrzadeh M. Thin film composite polyamide membranes: parametric study on the influence of synthesis conditions. RSC Advances 2015;5:54985-97. [97] Hermans S., Bernstein R., Volodin A., Vankelecom I.F.J. Study of synthesis parameters and active layer morphology of interfacially polymerized polyamide–polysulfone membranes. Reactive and Functional Polymers 2015;86:199-208. [98] Xiang J., Xie Z., Hoang M., Zhang K. Effect of amine salt surfactants on the performance of thin film composite poly(piperazine-amide) nanofiltration membranes. Desalination 2013;315:156-63. [99] Xiang J., Xie Z., Hoang M., Ng D., Zhang K. Effect of ammonium salts on the properties of poly(piperazineamide) thin film composite nanofiltration membrane. Journal of Membrane Science 2014;465:34-40. [100] Duan M., Wang Z., Xu J., Wang J., Wang S. Influence of hexamethyl phosphoramide on polyamide composite reverse osmosis membrane performance. Separation and Purification Technology 2010;75:145-55. [101] Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007;45:1558-65. [102] Hu M., Mi B. Enabling Graphene Oxide Nanosheets as Water Separation Membranes. Environmental Science & Technology 2013;47:3715-23. [103] Compton O.C., Nguyen S.T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small 2010;6:711-23. [104] Akther N., Yuan Z., Chen Y., Lim S., Phuntsho S., Ghaffour N., et al. Influence of graphene oxide lateral size on the properties and performances of forward osmosis membrane. Desalination 2020;484:114421. [105] Yin J., Zhu G., Deng B. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 2016;379:93-101. [106] Chae H.-R., Lee J., Lee C.-H., Kim I.-C., Park P.-K. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. Journal of Membrane Science 2015;483:128-35. [107] Sarada T., Sawyer L.C., Ostler M.I. Three dimensional structure of celgard® microporous membranes. Journal of Membrane Science 1983;15:97-113. [108] Zhu W., Zhang X., Zhao C., Wu W., Hou J., Xu M. A novel polypropylene microporous film. Polymers for Advanced Technologies 1996;7:743-8. [109] Trommer K., Morgenstern B. Nonrigid microporous PVC sheets: Preparation and properties. Journal of Applied Polymer Science 2010;115:2119-26. [110] Toimil-Molares M.E. Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology. Beilstein Journal of Nanotechnology 2012;3:860-83. [111] Bhardwaj N., Kundu S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances 2010;28:325-47. [112] Gopal R., Kaur S., Ma Z., Chan C., Ramakrishna S., Matsuura T. Electrospun nanofibrous filtration membrane. Journal of Membrane Science 2006;281:581-6. [113] Feng C., Khulbe K.C., Matsuura T., Gopal R., Kaur S., Ramakrishna S., et al. Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane. Journal of Membrane Science 2008;311:1-6. [114] Khayet M., Matsuura T. Chapter 7 - Formation of Nano-Fibre MD Membranes. In: Khayet M, Matsuura T, editors. Membrane Distillation. Amsterdam: Elsevier; 2011. p. 163-87. [115] Kaur S., Rana D., Matsuura T., Sundarrajan S., Ramakrishna S. Preparation and characterization of surface modified electrospun membranes for higher filtration flux. Journal of Membrane Science 2012;390-391:235-42. [116] Wang R., Liu Y., Li B., Hsiao B.S., Chu B. Electrospun nanofibrous membranes for high flux microfiltration. Journal of Membrane Science 2012;392-393:167-74. [117] Zhao Z., Zheng J., Wang M., Zhang H., Han C.C. High performance ultrafiltration membrane based on modified chitosan coating and electrospun nanofibrous PVDF scaffolds. Journal of Membrane Science 2012;394-395:209-17. [118] Lalia B.S., Kochkodan V., Hashaikeh R., Hilal N. A review on membrane fabrication: Structure, properties and performance relationship. Desalination 2013;326:77-95. [119] Jang D., Jeong S., Jang A., Kang S. Relating solute properties of contaminants of emerging concern and their rejection by forward osmosis membrane. Science of The Total Environment 2018;639:673-8. [120] Yoon Y., Westerhoff P., Snyder S.A., Wert E.C. Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. Journal of Membrane Science 2006;270:88-100. [121] Nghiem L.D., Schäfer A.I., Elimelech M. Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane. Journal of Membrane Science 2006;286:52-9. [122] Chen C., Han B., Li J., Shang T., Zou J., Jiang W. A new model on the diffusion of small molecule penetrants in dense polymer membranes. Journal of Membrane Science 2001;187:109-18. [123] Bui N.-N., Arena J.T., McCutcheon J.R. Proper accounting of mass transfer resistances in forward osmosis: Improving the accuracy of model predictions of structural parameter. Journal of Membrane Science 2015;492:289-302. [124] Manickam S.S., McCutcheon J.R. Understanding mass transfer through asymmetric membranes during forward osmosis: A historical perspective and critical review on measuring structural parameter with semi-empirical models and characterization approaches. Desalination 2017;421:110-26. [125] Wong M.C.Y., Martinez K., Ramon G.Z., Hoek E.M.V. Impacts of operating conditions and solution chemistry on osmotic membrane structure and performance. Desalination 2012;287:340-9. [126] Cath T.Y., Elimelech M., McCutcheon J.R., McGinnis R.L., Achilli A., Anastasio D., et al. Standard Methodology for Evaluating Membrane Performance in Osmotically Driven Membrane Processes. Desalination 2013;312:31-8. [127] Gray G.T., McCutcheon J.R., Elimelech M. Internal concentration polarization in forward osmosis: role of membrane orientation. Desalination 2006;197:1-8. [128] Tiraferri A., Yip N.Y., Straub A.P., Romero-Vargas Castrillon S., Elimelech M. A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes. Journal of Membrane Science 2013;444:523-38. [129] Huang L., McCutcheon J.R. Hydrophilic nylon 6,6 nanofibers supported thin film composite membranes for engineered osmosis. Journal of Membrane Science 2014;457:162-9. [130] Alsvik L.I., Hägg M.-B. Pressure Retarded Osmosis and Forward Osmosis Membranes: Materials and Methods. Polymers 2013;5. [131] Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., et al. Improved Synthesis of Graphene Oxide. ACS Nano 2010;4:4806-14. [132] Sahu R.S., Li D.-L., Doong R.-a. Unveiling the hydrodechlorination of trichloroethylene by reduced graphene oxide supported bimetallic Fe/Ni nanoparticles. Chemical Engineering Journal 2018;334:30-40. [133] Xia K., Mehadi A., Taylor R.W., Bleam W.F. X-Ray Absorption and Electron Paramagnetic Resonance Studies of Cu(II) Sorbed to Silica: Surface-Induced Precipitation at Low Surface Coverages. Journal of Colloid and Interface Science 1997;185:252-7. [134] Kim H., Kim T.Y., Roev V., Lee H.C., Kwon H.J., Lee H., et al. Enhanced Electrochemical Stability of Quasi-Solid-State Electrolyte Containing SiO2 Nanoparticles for Li-O2 Battery Applications. ACS Applied Materials & Interfaces 2016;8:1344-50. [135] Ohno T., Sarukawa K., Tokieda K., Matsumura M. Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. Journal of Catalysis 2001;203:82-6. [136] Liu T., Tong Y., Zhang W.-D. Preparation and characterization of carbon nanotube/polyetherimide nanocomposite films. Composites Science and Technology 2007;67:406-12. [137] Park M.J., Phuntsho S., He T., Nisola G.M., Tijing L.D., Li X.-M., et al. Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes. Journal of Membrane Science 2015;493:496-507. [138] Shaffer D.L., Werber J.R., Jaramillo H., Lin S., Elimelech M. Forward osmosis: Where are we now? Desalination 2015;356:271-84. [139] Han G., Liang C.-Z., Chung T.-S., Weber M., Staudt C., Maletzko C. Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater. Water Research 2016;91:361-70. [140] Gohil J.M., Ray P. A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: Potential for water treatment and desalination. Separation and Purification Technology 2017;181:159-82. [141] Hołda A.K., Vankelecom I.F.J. Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. Journal of Applied Polymer Science 2015;132. [142] Zhang S., Fu F., Chung T.-S. Substrate modifications and alcohol treatment on thin film composite membranes for osmotic power. Chemical Engineering Science 2013;87:40-50. [143] Khorshidi B., Thundat T., Fleck B., Sadrzadeh M. Thin film composite polyamide membranes: parametric study on the influence of synthesis conditions. RSC Advances 2015;5:54985-97. [144] Deng J., You Y., Bustamante H., Sahajwalla V., Joshi R.K. Mechanism of water transport in graphene oxide laminates. Chemical Science 2017;8:1701-4. [145] Lai G.S., Lau W.J., Goh P.S., Ismail A.F., Yusof N., Tan Y.H. Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance. Desalination 2016;387:14-24. [146] Niksefat N., Jahanshahi M., Rahimpour A. The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application. Desalination 2014;343:140-6. [147] Chen G., Liu R., Shon H.K., Wang Y., Song J., Li X.-M., et al. Open porous hydrophilic supported thin-film composite forward osmosis membrane via co-casting for treatment of high-salinity wastewater. Desalination 2017;405:76-84. [148] Liu X., Ng H.Y. Double-blade casting technique for optimizing substrate membrane in thin-film composite forward osmosis membrane fabrication. Journal of Membrane Science 2014;469:112-26. [149] Li X.-M., Ji Y., Yin Y., Zhang Y.-Y., Wang Y., He T. Origin of delamination/adhesion in polyetherimide/polysulfone co-cast membranes. Journal of Membrane Science 2010;352:173-9. [150] Tohidian E., Zokaee Ashtiani F., Kargari A. Optimization of the condition for the fabrication of a two-layer integrated skin polyetherimide nanofiltration membrane. Journal of Water Process Engineering 2020;34:101176. [151] Han G., Zhang S., Li X., Widjojo N., Chung T.-S. Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection. Chemical Engineering Science 2012;80:219-31. [152] Song X., Wang L., Mao L., Wang Z. Nanocomposite Membrane with Different Carbon Nanotubes Location for Nanofiltration and Forward Osmosis Applications. ACS Sustainable Chemistry & Engineering 2016;4:2990-7. [153] Rastgar M., Shakeri A., Bozorg A., Salehi H., Saadattalab V. Impact of nanoparticles surface characteristics on pore structure and performance of forward osmosis membranes. Desalination 2017;421:179-89. [154] Zhang H., Bin L., Pan J., Qi Y., Shen J., Gao C., et al. Carboxyl-functionalized graphene oxide polyamide nanofiltration membrane for desalination of dye solutions containing monovalent salt. Journal of Membrane Science 2017;539:128-37. [155] Lin Y.-L., Lee C.-H. Elucidating the Rejection Mechanisms of PPCPs by Nanofiltration and Reverse Osmosis Membranes. Industrial & Engineering Chemistry Research 2014;53:6798-806. [156] Ammar A., Dofan I., Jegatheesan V., Muthukumaran S., Shu L. Comparison between nanofiltration and forward osmosis in the treatment of dye solutions. Desalination and Water Treatment 2015;54:853-61. [157] Huang M., Chen Y., Huang C.-H., Sun P., Crittenden J. Rejection and adsorption of trace pharmaceuticals by coating a forward osmosis membrane with TiO2. Chemical Engineering Journal 2015;279:904-11.
|