|
[1] E. Nester, D. Anderson, C. Roberts, J. Nancy, N. Pearsall, M. Nester, Microbiology, A Human Perspective. Vol. 7, Seattle, WA: McGraw-Hill, 2012. [2] M.J. Wilhelm, J.B. Sheffield, M. Sharifian Gh, Y. Wu, C. Spahr, G. Gonella, B. Xu, H.L. Dai, Gram’s stain does not cross the bacterial cytoplasmic membrane, ACS Chemical Biology 10(7) (2015) 1711-1717. [3] S. Munishwar, P. Pawar, S. Janbandhu, R. Gedam, Highly stable CdS quantum dots embedded in glasses and its application for inhibition of bacterial colonies, Optical Materials 99 (2020) 109590. [4] C.A. Janeway, J.D. Capra, P. Travers, M. Walport, Immunobiology: the immune system in health and disease, Current Biology Publications, 1999. [5] H. Shahali, J. Hasan, A. Mathews, H. Wang, C. Yan, T. Tesfamichael, P.K. Yarlagadda, Multi-biofunctional properties of three species of cicada wings and biomimetic fabrication of nanopatterned titanium pillars, Journal of Materials Chemistry B 7(8) (2019) 1300-1310. [6] I. Banerjee, R.C. Pangule, R.S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms, Advanced Materials 23(6) (2011) 690-718. [7] G.D. Bixler, B. Bhushan, Biofouling: lessons from nature, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370(1967) (2012) 2381-2417. [8] Q. Xie, J. Pan, C. Ma, G. Zhang, Dynamic surface antifouling: mechanism and systems, Soft Matter 15(6) (2019) 1087-1107. [9] B.G. Werner, J.Y. Wu, J.M. Goddard, Antimicrobial and antifouling polymeric coating mitigates persistence of Pseudomonas aeruginosa biofilm, Biofouling 35(7) (2019) 785-795. [10] G. O'Toole, H.B. Kaplan, R. Kolter, Biofilm formation as microbial development, Annual Reviews in Microbiology 54(1) (2000) 49-79. [11] C.R. Arciola, D. Campoccia, P. Speziale, L. Montanaro, J.W. Costerton, Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials, Biomaterials 33(26) (2012) 5967-5982. [12] R. Vasudevan, Biofilms: microbial cities of scientific significance, Journal of Microbiology & Experimentation 1(3) (2014) 00014. [13] R.B. Dickinson, S.L. Cooper, Analysis of shear‐dependent bacterial adhesion kinetics to biomaterial surfaces, AIChE Journal 41(9) (1995) 2160-2174. [14] R.R. Isberg, P. Barnes, Dancing with the host: flow-dependent bacterial adhesion, Cell 110(1) (2002) 1-4. [15] J.E. Duddridge, C. Kent, J. Laws, Effect of surface shear stress on the attachment of Pseudomonas fluorescens to stainless steel under defined flow conditions, Biotechnology and Bioengineering 24(1) (1982) 153-164. [16] M. Katsikogianni, Y. Missirlis, Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions, European Cells & Materials 8(3) (2004) 37-57. Journal of Coatings Technology and Research [17] T.R. Scheuerman, A.K. Camper, M.A. Hamilton, Effects of substratum topography on bacterial adhesion, Journal of Colloid and Interface Science 208(1) (1998) 23-33. [18] C.E. Zobell, The effect of solid surfaces upon bacterial activity, Journal of Bacteriology 46(1) (1943) 39-56. [19] J. Hasan, R.J. Crawford, E.P. Ivanova, Antibacterial surfaces: the quest for a new generation of biomaterials, Trends in Biotechnology 31(5) (2013) 295-304. [20] A.C. Noguer, S.M. Olsen, S. Hvilsted, S. Kiil, Long-term stability of PEG-based antifouling surfaces in seawater, Journal of Coatings Technology and Research 13(4) (2016) 567-575. [21] J.H. Lee, H.B. Lee, J.D. Andrade, Blood compatibility of polyethylene oxide surfaces, Progress in Polymer Science 20(6) (1995) 1043-1079. [22] W. Ma, S. Rajabzadeh, A.R. Shaikh, Y. Kakihana, Y. Sun, H. Matsuyama, Effect of type of poly (ethylene glycol)(PEG) based amphiphilic copolymer on antifouling properties of copolymer/poly (vinylidene fluoride)(PVDF) blend membranes, Journal of Membrane Science 514 (2016) 429-439. [23] V. Hynninen, L. Vuori, M. Hannula, K. Tapio, K. Lahtonen, T. Isoniemi, E. Lehtonen, M. Hirsimäki, J.J. Toppari, M. Valden, Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology, Scientific Reports 6(1) (2016) 1-12. [24] E. Ostuni, R.G. Chapman, R.E. Holmlin, S. Takayama, G.M. Whitesides, A survey of structure− property relationships of surfaces that resist the adsorption of protein, Langmuir 17(18) (2001) 5605-5620. [25] L. Li, S. Chen, S. Jiang, Protein interactions with oligo (ethylene glycol)(OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption, Journal of Biomaterials Science, Polymer Edition 18(11) (2007) 1415-1427. [26] H. Vaisocherova, W. Yang, Z. Zhang, Z. Cao, G. Cheng, M. Piliarik, J. Homola, S. Jiang, Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma, Analytical Chemistry 80(20) (2008) 7894-7901. [27] C. Wu, Y. Zhou, H. Wang, J. Hu, X. Wang, Formation of antifouling functional coating from deposition of a zwitterionic-co-nonionic polymer via “grafting to” approach, Journal of Saudi Chemical Society 23(8) (2019) 1080-1089. [28] B. Xu, C. Feng, J. Hu, P. Shi, G. Gu, L. Wang, X. Huang, Spin-casting polymer brush films for stimuli-responsive and anti-fouling surfaces, ACS Applied Materials & Interfaces 8(10) (2016) 6685-6692. [29] W. Zhao, Q. Ye, H. Hu, X. Wang, F. Zhou, Grafting zwitterionic polymer brushes via electrochemical surface-initiated atomic-transfer radical polymerization for anti-fouling applications, Journal of Materials Chemistry B 2(33) (2014) 5352-5357. [30] D. Keskin, T. Mokabbar, Y. Pei, P. Van Rijn, The relationship between bulk silicone and benzophenone-initiated hydrogel coating properties, Polymers 10(5) (2018) 534. [31] B. Le Ouay, F. Stellacci, Antibacterial activity of silver nanoparticles: a surface science insight, Nano Today 10(3) (2015) 339-354. [32] S. Chernousova, M. Epple, Silver as antibacterial agent: ion, nanoparticle, and metal, Angewandte Chemie International Edition 52(6) (2013) 1636-1653. [33] J.J. Castellano, S.M. Shafii, F. Ko, G. Donate, T.E. Wright, R.J. Mannari, W.G. Payne, D.J. Smith, M.C. Robson, Comparative evaluation of silver‐containing antimicrobial dressings and drugs, International Wound Jurnal 4(2) (2007) 114-122. [34] A. Roy, O. Bulut, S. Some, A.K. Mandal, M.D. Yilmaz, Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity, RSC Advances 9(5) (2019) 2673-2702. [35] N. Dasgupta, S. Ranjan, D. Mishra, C. Ramalingam, Thermal Co-reduction engineered silver nanoparticles induce oxidative cell damage in human colon cancer cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis, Chemico-Biological Interactions 295 (2018) 109-118. [36] A. Burd, C.H. Kwok, S.C. Hung, H.S. Chan, H. Gu, W.K. Lam, L. Huang, A comparative study of the cytotoxicity of silver‐based dressings in monolayer cell, tissue explant, and animal models, Wound Repair and Regeneration 15(1) (2007) 94-104. [37] S.K. Brar, M. Verma, R. Tyagi, R. Surampalli, Engineered nanoparticles in wastewater and wastewater sludge–Evidence and impacts, Waste Management 30(3) (2010) 504-520. [38] C.R. Allan, L.A. Hadwiger, The fungicidal effect of chitosan on fungi of varying cell wall composition, Experimental Mycology 3(3) (1979). [39] R.C. Goy, S.T. Morais, O.B. Assis, Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth, Revista Brasileira de Farmacognosia 26(1) (2016) 122-127. [40] B. Bellich, I. D’Agostino, S. Semeraro, A. Gamini, A. Cesàro, “The good, the bad and the ugly” of chitosans, Marine Drugs 14(5) (2016) 99-130. [41] C. Schmitz, L. González Auza, D. Koberidze, S. Rasche, R. Fischer, L. Bortesi, Conversion of Chitin to Defined Chitosan Oligomers: Current Status and Future Prospects, Marine Drugs 17(8) (2019) 452. [42] H.F.S. Gafri, F.M. Zuki, M.K. Aroua, N.A. Hashim, Mechanism of bacterial adhesion on ultrafiltration membrane modified by natural antimicrobial polymers (chitosan) and combination with activated carbon (PAC), Reviews in Chemical Engineering 35(3) (2019) 421-443. [43] M.R. Kasaai, A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy, Carbohydrate Polymers 71(4) (2008) 497-508. [44] E. Fu, K. McCue, D. Boesenberg, Chemical disinfection of hard durfaces–household, industrial and institutional settings, Handbook for Cleaning/decontamination of Surfaces (2007) 573-592. [45] A.J. McBain, R.G. Ledder, L.E. Moore, C.E. Catrenich, P. Gilbert, Effects of quaternary-ammonium-based formulations on bacterial community dynamics and antimicrobial susceptibility, Applied and Environmental Microbiology 70(6) (2004) 3449-3456. [46] M.C. Jennings, K.P. Minbiole, W.M. Wuest, Quaternary ammonium compounds: an antimicrobial mainstay and platform for innovation to address bacterial resistance, ACS Infectious Diseases 1(7) (2015) 288-303. [47] M. Jadhav, R.S. Kalhapure, S. Rambharose, C. Mocktar, T. Govender, Synthesis, characterization and antibacterial activity of novel heterocyclic quaternary ammonium surfactants, Journal of Industrial and Engineering Chemistry 47 (2017) 405-414. [48] C. Zhang, F. Cui, G.M. Zeng, M. Jiang, Z.Z. Yang, Z.G. Yu, M.Y. Zhu, L.Q. Shen, Quaternary ammonium compounds (QACs): a review on occurrence, fate and toxicity in the environment, Science of the Total Environment 518 (2015) 352-362. [49] C.P. Gerba, Quaternary ammonium biocides: efficacy in application, Applied and Environmental Microbiology 81(2) (2015) 464-469. [50] A.J. Haider, Z.N. Jameel, I.H. Al-Hussaini, Review on: titanium dioxide applications, Energy Procedia 157 (2019) 17-29. [51] H.M. Yadav, J.S. Kim, S.H. Pawar, Developments in photocatalytic antibacterial activity of nano TiO 2: A review, Korean Journal of Chemical Engineering 33(7) (2016) 1989-1998. [52] S.M. Gupta, M. Tripathi, A review of TiO 2 nanoparticles, Chinese Science Bulletin 56(16) (2011) 1639-1657. [53] N. Rahimi, R.A. Pax, E.M. Gray, Review of functional titanium oxides. I: TiO2 and its modifications, Progress in Solid State Chemistry 44(3) (2016) 86-105. [54] H. Wang, X. Huang, W. Li, J. Gao, H. Xue, R.K. Li, Y. W. Mai, TiO2 nanoparticle decorated carbon nanofibers for removal of organic dyes, Colloids and Surfaces A: Physicochemical and Engineering Aspects 549 (2018) 205-211. [55] D. He, F. Lin, Preparation and photocatalytic activity of anatase TiO2 nanocrystallites with high thermal stability, Materials Letters 61(16) (2007) 3385-3387. [56] J. Zhang, Q. Xu, Z. Feng, M. Li, C. Li, Importance of the relationship between surface phases and photocatalytic activity of TiO2, Angewandte Chemie International Edition 47(9) (2008) 1766-1769. [57] J.E. Haggerty, L.T. Schelhas, D.A. Kitchaev, J.S. Mangum, L.M. Garten, W. Sun, K.H. Stone, J.D. Perkins, M.F. Toney, G. Ceder, High-fraction brookite films from amorphous precursors, Scientific Reports 7(1) (2017) 1-11. [58] S. Noimark, K. Page, J.C. Bear, C. Sotelo-Vazquez, R. Quesada-Cabrera, Y. Lu, E. Allan, J.A. Darr, I.P. Parkin, Functionalised gold and titania nanoparticles and surfaces for use as antimicrobial coatings, Faraday Discussions 175 (2015) 273-287. [59] B. Pant, M. Park, S.-J. Park, Recent Advances in TiO2 films prepared by sol-gel methods for photocatalytic degradation of organic pollutants and antibacterial activities, Coatings 9(10) (2019) 613. [60] T. Chen, G. Liu, F. Jin, M. Wei, J. Feng, Y. Ma, Mediating both valence and conduction bands of TiO2 by anionic dopants for visible-and infrared-light photocatalysis, Physical Chemistry Chemical Physics 20(18) (2018) 12785-12790. [61] T. Ali, A. Ahmed, U. Alam, I. Uddin, P. Tripathi, M. Muneer, Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light, Materials Chemistry and Physics 212 (2018) 325-335. [62] X. Jiang, B. Lv, Y. Wang, Q. Shen, X. Wang, Bactericidal mechanisms and effector targets of TiO2 and Ag-TiO2 against Staphylococcus aureus, Journal of Medical Microbiology 66(4) (2017) 440-446. [63] K. Gupta, R. Singh, A. Pandey, A. Pandey, Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli, Beilstein journal of Nanotechnology 4(1) (2013) 345-351. [64] D. Chun, M. Kim, J. Lee, S. Ahn, TiO2 coating on metal and polymer substrates by nano-particle deposition system (NPDS), CIRP Annals 57(1) (2008) 551-554. [65] Y. Lu, S. Guan, L. Hao, H. Yoshida, Review on the photocatalyst coatings of TiO2: Fabrication by mechanical coating technique and its application, Coatings 5(3) (2015) 425-464. [66] W.R. Hansen, K. Autumn, Evidence for self-cleaning in gecko setae, Proceedings of the National Academy of Sciences 102(2) (2005) 385-389. [67] S. Nishimoto, B. Bhushan, Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity, RSC Advances 3(3) (2013) 671-690. [68] M. Sun, A. Liang, Y. Zheng, G.S. Watson, J.A. Watson, A study of the anti-reflection efficiency of natural nano-arrays of varying sizes, Bioinspiration & Biomimetics 6(2) (2011) 026003. [69] J. Ye, J. Deng, Y. Chen, T. Yang, Y. Zhu, C. Wu, T. Wu, J. Jia, X. Cheng, X. Wang, Cicada and catkin inspired dual biomimetic antibacterial structure for the surface modification of implant material, Biomaterials Science 7(7) (2019) 2826-2832. [70] R.R. Naik, S. Singamaneni, Introduction: Bioinspired and biomimetic materials, Chemical Reviews 117(20) (2017) 12581-12583. [71] S. Vignolini, N. Bruns, Bioinspiration across all length scales of materials, Advanced Materials 30(19) (2018) 1801687. [72] Y. Sun, Z. Guo, Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature, Nanoscale Horizons 4(1) (2019) 52-76. [73] R. Simon, S. Rupitsch, M. Baumann, H. Wu, H. Peremans, J. Steckel, Bioinspired sonar reflectors as guiding beacons for autonomous navigation, Proceedings of the National Academy of Sciences 117(3) (2020) 1367-1374. [74] Y. Paihas, C. Capus, K. Brown, D. Lane, Benefits of dolphin inspired sonar for underwater object identification, Conference on Biomimetic and Biohybrid Systems (2013) 36-46. [75] M. Heim, L. Römer, T. Scheibel, Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins, Chemical Society Reviews 39(1) (2010) 156-164. [76] M.S. Mozumder, A. H.I. Mourad, H. Pervez, R. Surkatti, Recent developments in multifunctional coatings for solar panel applications: A review, Solar Energy Materials and Solar Cells 189 (2019) 75-102. [77] T. Zhang, Y. Ma, L. Qi, Bioinspired colloidal materials with special optical, mechanical, and cell-mimetic functions, Journal of Materials Chemistry B 1(3) (2013) 251-264. [78] A. Braem, L. Van Mellaert, T. Mattheys, D. Hofmans, E. De Waelheyns, L. Geris, J. Anné, J. Schrooten, J. Vleugels, Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications, Journal of Biomedical Materials Research Part A 102(1) (2014) 215-224. [79] J. Moritz, A. Abram, M. Čekada, U. Gabor, M. Garvas, I. Zdovc, A. Dakskobler, J. Cotič, K. Ivičak-Kocjan, A. Kocjan, Nanoroughening of sandblasted 3Y-TZP surface by alumina coating deposition for improved osseointegration and bacteria reduction, Journal of the European Ceramic Society 39(14) (2019) 4347-4357. [80] A. Jaggessar, H. Shahali, A. Mathew, P.K. Yarlagadda, Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants, Journal of Nanobiotechnology 15(1) (2017) 64. [81] G.D. Bixler, B. Bhushan, Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects, Soft Matter 8(44) (2012) 11271-11284. [82] C.M. Magin, S.P. Cooper, A.B. Brennan, Non-toxic antifouling strategies, Materials Today 13(4) (2010) 36-44. [83] A. Velic, A. Mathew, P. Hines, P.K. Yarlagadda, Control of bacterial attachment by fracture topography, Journal of the Mechanical Behavior of Biomedical Materials 91 (2019) 416-424. [84] F. Song, H. Koo, D. Ren, Effects of material properties on bacterial adhesion and biofilm formation, Journal of Dental Research 94(8) (2015) 1027-1034. [85] Y. Ammar, D. Swailes, B. Bridgens, J. Chen, Influence of surface roughness on the initial formation of biofilm, Surface and Coatings Technology 284 (2015) 410-416. [86] A. Elbourne, J. Chapman, A. Gelmi, D. Cozzolino, R.J. Crawford, V.K. Truong, Bacterial-nanostructure interactions: The role of cell elasticity and adhesion forces, Journal of Colloid and Interface Science 546 (2019) 192-210. [87] M. Munther, T. Palma, I.A. Angeron, S. Salari, H. Ghassemi, M. Vasefi, A. Beheshti, K. Davami, Microfabricated biomimetic placoid scale-inspired surfaces for antifouling applications, Applied Surface Science 453 (2018) 166-172. [88] Y. Liu, G. Li, A new method for producing “Lotus Effect” on a biomimetic shark skin, Journal of Colloid and Interface Science 388(1) (2012) 235-242. [89] G.V. Lauder, D.K. Wainwright, A.G. Domel, J.C. Weaver, L. Wen, K. Bertoldi, Structure, biomimetics, and fluid dynamics of fish skin surfaces, Physical Review Fluids 1(6) (2016) 060502. [90] K. Feld, A.N. Kolborg, C.M. Nyborg, M. Salewski, J.F. Steffensen, K. Berg-Sørensen, Dermal Denticles of Three Slowly Swimming Shark species: microscopy and flow visualization, Biomimetics 4(2) (2019) 38. [91] P. Xia, L. Guangji, H. Hanlu, L. Yunhong, M.A. Ashraf, Using bio-replicated forming technologies to fabricate shark-skin surface, Brazilian Archives of Biology and Technology 60 (2017) e17160511. [92] L. Wen, J.C. Weaver, P.J. Thornycroft, G.V. Lauder, Hydrodynamic function of biomimetic shark skin: effect of denticle pattern and spacing, Bioinspiration & Biomimetics 10(6) (2015) 066010. [93] A. Lang, P. Motta, M.L. Habegger, R. Hueter, Shark skin boundary layer control, Natural Locomotion in Fluids and on Surfaces (2012) 139-150. [94] Y. Zhang, W. Zhao, Z. Chen, Z. Liu, H. Cao, C. Zhou, P. Cui, Influence of biomimetic boundary structure on the antifouling performances of siloxane modified resin coatings, Colloids and Surfaces A: Physicochemical and Engineering Aspects 528 (2017) 57-64. [95] X. Pu, G. Li, H. Huang, Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface, Biology Open 5(4) (2016) 389-396. [96] G.D. Bixler, B. Bhushan, Fluid drag reduction with shark‐skin riblet inspired microstructured surfaces, Advanced Functional Materials 23(36) (2013) 4507-4528. [97] J.F. Schumacher, M.L. Carman, T.G. Estes, A.W. Feinberg, L.H. Wilson, M.E. Callow, J.A. Callow, J.A. Finlay, A.B. Brennan, Engineered antifouling microtopographies–effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva, Biofouling 23(1) (2007) 55-62. [98] S.T. Reddy, K.K. Chung, C.J. McDaniel, R.O. Darouiche, J. Landman, A.B. Brennan, Micropatterned surfaces for reducing the risk of catheter-associated urinary tract infection: an in vitro study on the effect of sharklet micropatterned surfaces to inhibit bacterial colonization and migration of uropathogenic Escherichia coli, Journal of Endourology 25(9) (2011) 1547-1552. [99] K.K. Chung, J.F. Schumacher, E.M. Sampson, R.A. Burne, P.J. Antonelli, A.B. Brennan, Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus, Biointerphases 2(2) (2007) 89-94. [100] S. Rakers, L. Niklasson, D. Steinhagen, C. Kruse, J. Schauber, K. Sundell, R. Paus, Antimicrobial peptides (AMPs) from fish epidermis: perspectives for investigative dermatology, Journal of Investigative Dermatology 133(5) (2013) 1140-1149. [101] M. Ritter, A landmark-based method for the geometrical 3D calibration of scanning microscopes, Measurement Science and Technology 18(2) (2007) 404-414. [102] F. Dundar Arisoy, K.W. Kolewe, B. Homyak, I.S. Kurtz, J.D. Schiffman, J.J. Watkins, Bioinspired photocatalytic shark-skin surfaces with antibacterial and antifouling activity via nanoimprint lithography, ACS Applied Materials & Interfaces 10(23) (2018) 20055-20063. [103] A. Marra, S. Cimmino, C. Silvestre, Effect of TiO2 and ZnO on PLA degradation in various media, Science of Advanced Materials 2(2) (2017) 1-8. [104] Y. Luo, W. Song, X. Wang, Water repellent/wetting characteristics of various bio-inspired morphologies and fluid drag reduction testing research, Micron 82 (2016) 9-16. [105] A.G. Domel, G. Domel, J.C. Weaver, M. Saadat, K. Bertoldi, G.V. Lauder, Hydrodynamic properties of biomimetic shark skin: Effect of denticle size and swimming speed, Bioinspiration & Biomimetics 13(5) (2018) 056014. [106] M.V. Ankhelyi, D.K. Wainwright, G.V. Lauder, Diversity of dermal denticle structure in sharks: Skin surface roughness and three‐dimensional morphology, Journal of Morphology 279(8) (2018) 1132-1154. [107] L. Qin, M. Hafezi, H. Yang, G. Dong, Y. Zhang, Constructing a dual-function surface by microcasting and nanospraying for efficient drag reduction and potential antifouling capabilities, Micromachines 10(7) (2019) 490. [108] Y. Yuan, M.P. Hays, P.R. Hardwidge, J. Kim, Surface characteristics influencing bacterial adhesion to polymeric substrates, RSC Advances 7(23) (2017) 14254-14261. [109] S. Wu, B. Zhang, Y. Liu, X. Suo, H. Li, Influence of surface topography on bacterial adhesion: A review, Biointerphases 13(6) (2018) 060801. [110] G. Feng, Y. Cheng, S.Y. Wang, D.A. Borca-Tasciuc, R.W. Worobo, C.I. Moraru, Bacterial attachment and biofilm formation on surfaces are reduced by small-diameter nanoscale pores: how small is small enough?, NPJ Biofilms and Microbiomes 1(15022) (2015) 1-9. [111] J.C. Tuberquia, N. Nizamidin, G.K. Jennings, Effect of superhydrophobicity on the barrier properties of polymethylene films, Langmuir 26(17) (2010) 14039-14046. [112] Y. Cheng, G. Feng, C.I. Moraru, Micro-and nanotopography sensitive bacterial attachment mechanisms: A review, Frontiers in Microbiology 10 (2019) 191. [113] F.J. Tommasini, L.d.C. Ferreira, L.G.P. Tienne, V.d.O. Aguiar, M.H.P.d. Silva, L.F.d.M. Rocha, M.d.F.V. Marques, Poly (methyl methacrylate)-SiC nanocomposites prepared through in situ polymerization, Materials Research 21(6) (2018) e20180086. [114] A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, P. Zapata, P.A. Orihuela, FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol, Applied Sciences 7(1) (2017) 49. [115] S. Mugundan, B. Rajamannan, G. Viruthagiri, N. Shanmugam, R. Gobi, P. Praveen, Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique, Applied Nanoscience 5(4) (2015) 449-456. [116] C. Zhang, Y. Zhou, T. Shao, Q. Xie, J. Xu, W. Yang, Hydrophobic treatment on polymethylmethacrylate surface by nanosecond-pulse DBDs in CF4 at atmospheric pressure, Applied Surface Science 311 (2014) 468-477. [117] P. Louette, F. Bodino, J.J. Pireaux, Poly(methyl methacrylate)(PMMA) XPS reference core level and energy loss spectra, Surface Science Spectra 12(1) (2005) 69-73. [118] O. Mekasuwandumrong, S. Chaitaworn, J. Panpranot, P. Praserthdam, Photocatalytic liquid-phase selective hydrogenation of 3-nitrostyrene to 3-vinylaniline of various treated-TiO2 without use of reducing gas, Catalysts 9(4) (2019) 329.
|