|
[1]F. Anzalone, "Statistical models of program/verify algorithm in resistive memory arrays for neural network accelerators", Politesi, 2020. [2]Z. Shen, C. Zhao, and Y. Qi et al., "Advances of RRAM devices: resistive switching mechanisms, materials and bionic synaptic application", Nanomaterials 10, no 8: 1437, Jul. 2020. [3]H. S. P. Wong, S. Raoux, and S. B. Kim et al., "Phase change memory", IEEE, vol. 98, no. 12, pp. 2201-2227, Dec. 2010. [4]X. Zhang, L. Xu, and H. Zhang et al., "Effect of joule heating on resistive switching characteristic in AlOx cells made by thermal oxidation formation", Nanoscale Research Letters, 15(1), pp.1-8, Jan 2020. [5]S. Munjal, and N. Khare, "Valence change bipolar resistive switching accompanied with magnetization switching in CoFe2O4 thin film", Scientific reports, 7(1), pp.1-10, Sep 2017. [6]W. S. Choi, J. T. Jang, and D. Kim et al., "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications", Chaos, Solitons & Fractals, vol. 156, p.111813, Mar 2022. [7]J. Y. Mao, L. Zhou, and Y. Ren et al., "A bio-inspired electronic synapse using solution processable organic small molecule", Journal of Materials Chemistry C, 7(6), pp.1491-1501, Dec 2018. [8]J. Park, "Neuromorphic computing using emerging synaptic devices: a retrospective summary and an outlook", Electronics, vol. 9(9), p.1414, Sep 2020. [9]H. U. Dike, Y. Zhou, and K. K. Deveerasetty et al., "Unsupervised learning based on artificial neural network: a review", In 2018 IEEE International Conference on Cyborg and Bionic Systems (pp. 322-327), Oct 2018. [10]M. Ismail, C. Mahata, and H. Abbas et al., "Bipolar, complementary resistive switching and synaptic properties of sputtering deposited ZnSnO-based devices for electronic synapses", Journal of Alloys and Compounds, vol. 862, p.158416, May 2021. [11]H. Cho, and S. Kim, "Short-term memory dynamics of TiN/Ti/TiO2/SiOx/Si resistive random access memory", Nanomaterials, vol. 10(9), p.1821, Sep 2020. [12]N. C. Das, M. Kim, and J. R. Rani et al., "Low-temperature characteristics of magnesium fluoride based bipolar RRAM devices", Nanoscale, 14(10), pp.3738-3747, Feb 2022. [13]Y. Sun, H. Xu, and C. Wang et al., "A Ti/AlOx/TaOx/Pt analog synapse for memristive neural network", IEEE Electron Device Letters, 39(9), pp.1298-1301, Sep 2018. [14]S. Chandrasekaran, F. M. Simanjuntak, and D. Panda et al., "Enhanced synaptic linearity in ZnO-based invisible memristive synapse by introducing double pulsing scheme", IEEE Transactions on Electron Devices, 66(11), pp.4722-4726, Nov 2019. [15]P. Y. Chen, X. Peng, and S. Yu et al., "NeuroSim: a circuit-level macro model for benchmarking neuro-inspired architectures in online learning", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37(12), pp.3067-3080, Dec 2018. [16]Y. Xi, B. Gao, and J. Tang et al., "In-memory learning with analog resistive switching memory: a review and perspective", Proceedings of the IEEE, 109(1), pp.14-42, Jan 2020. [17]N. Ilyas, D. Li, and C. Li et al., "Analog switching and artificial synaptic behavior of Ag/SiOx:Ag/TiOx/p++-Si memristor device", Nanoscale research letters, 15(1), pp.1-11, Jan 2020. [18]G. González-Cordero, M. Pedro, and J. Martin-Martinez et al., "Analysis of resistive switching processes in TiN/Ti/HfO2/W devices to mimic electronic synapses in neuromorphic circuits", Solid-State Electronics, 157, pp.25-33, Jul 2019. [19]K. C. Chuang, C. Y. Chu, and H. X. Zhang et al., "Impact of the stacking order of HfOx and AlOx dielectric films on RRAM switching mechanisms to behave digital resistive switching and synaptic characteristics", IEEE Journal of the Electron Devices Society, vol. 7, pp.589-595, May 2019. [20]D. Lee, A. S. Sokolov, and B. Ku et al., "Improved switching and synapse characteristics using PEALD SiO2 thin film in Cu/SiO2/ZrO2/Pt device", Applied Surface Science, 547, p.149140, May 2021. [21]Y. Sun, H. Xu, and S. Liu et al., "Short-term and long-term plasticity mimicked in low-voltage Ag/GeSe/TiN electronic synapse", IEEE Electron Device Letters, 39(4), pp.492-495, Apr 2018. [22]K. Zarudnyi, A. Mehonic, and L. Montesi et al., "Spike-timing dependent plasticity in unipolar silicon oxide RRAM devices", Frontiers in Neuroscience, 12, p.57, Feb 2018. [23]W. Chen, H. J. Barnaby, and M. N. Kozicki., "Volatile and non-volatile switching in Cu-SiO2 programmable metallization cells", IEEE Electron Device Letters, 37(5), pp.580-583, May 2016. [24]C. L. Hsu, A. Saleem, and A. Singh et al., "Enhanced linearity in CBRAM synapse by post oxide deposition annealing for neuromorphic computing applications", IEEE Transactions on Electron Devices, 68(11), pp.5578-5584, Nov 2021. [25]M. K. Kim, and J. S. Lee., "Synergistic improvement of long‐term plasticity in photonic synapses using ferroelectric polarization in hafnia‐based oxide‐semiconductor transistors", Advanced Materials, 32(12), p.1907826, Feb 2020. [26]A. Ali, H. Abbas, and M. Hussain et al., "Thickness-dependent monochalcogenide GeSe-based CBRAM for memory and artificial electronic synapses", Nano Research, 15(3), pp.2263-2277, Sep 2021.
|