|
[1]劉曉薇、陳思翰,(2017).金屬二次加工自動化,光學檢測技術,智慧機械,機械資訊月刊. [2]Rosenblatt,F.(1958).The perceptron: a probabilistic model for information storage and organization in the brain.Psychological review, 65(6), 386. [3]Gardner,M.W.,& Dorling,S.R.(1998).Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment, 32(14-15), 2627-2636. [4]Rumelhart,D.E.,Hinton,G.E.,& Williams,R.J.(1986).Learning representations by back-propagating errors. nature,323(6088),533. [5]Hecht-Nielsen,R.(1992).Theory of the backpropagation neural network. In Neural networks for perception (pp.65-93). [6]Quinlan,J.R.(1986).Induction of decision trees.Machine learning, 1(1),81-106. [7]Cortes,C.,& Vapnik,V.(1995).Support-vector networks.Machine learning,20(3),273-297. [8]LeCun,Y.,Bottou,L.,Bengio,Y.,& Haffner,P.(1998).Gradient-based learning applied to document recognition.Proceedings of the IEEE, 86(11),2278-2324. [9]Hinton,G.E.,Osindero,S.,& Teh,Y.W.(2006).A fast learning algorithm for deep belief nets. Neural computation,18(7),1527-1554. [10]Krizhevsky,A.,Sutskever,I.,& Hinton,G.E.(2012).ImageNet classification with deep convolutional neural networks.In Advances in neural information processingsystems (pp.1097-1105). [11]Socher,R.,Bauer,J.,& Manning,C.D.(2013).Parsing with compositional vector grammars.In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (Vol. 1,pp.455-465). [12]A.M. Legendre. Nouvelles méthodes pour la détermination des orbites des comètes, Firmin Didot, Paris, 1805. 「Sur la Méthode des moindres quarrés」 appears as an appendix. [13]Mitchell, T.M. (1980). The need for biases in learning generalizations. CBM-TR 5-110, Rutgers University, New Brunswick, NJ. [14]Jardins, M., and Gordon, D.F. (1995). Evaluation and selection of biases in machine learning. Machine Learning Journal, 5:1--17, 1995. [15]Altman, N. S. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician. 1992, 46 (3): 175–185. [16]Salamin, Eugene, Computation of pi, Charles Stark Draper Laboratory ISS memo 74–19, 30 January, 1974, Cambridge, Massachusetts. [17]Caruana, R. and Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. Proceedings of the 23rd international conference on Machine learning, 2006. [18]Broomhead, David H.; Lowe, David. Multivariable Functional Interpolation and Adaptive Networks (PDF). Complex Systems. 1988, 2: 321–355. [19]Goodfellow, Ian J.; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley, David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua.Generative Adversarial Networks. 2014. [20]Haykin,Simon.9.Self-organizing maps.Neural networks - A comprehensive foundation 2nd. Prentice-Hall.1999. [21]Carpenter,G.A. and Grossberg, S.,ART2: self-organisation of stable category recognition codes for analog input patterns, Applied Optics, 26(23), 4919-4930, 1987. [22]LeCun,Y.,Bottou,L.,Bengio,Y.,& Haffner,P.(1998).Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. [23]Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp.818-833). Springer, Cham. [24]Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for largescale image recognition. arXiv preprint arXiv:1409.1556. [25]Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015, June). Going deeper with convolutions. Cvpr. [26]He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). [27]Lin, C. H., Liu, J. C., & Lee, K. Y. (2018). On Neural Networks for Biometric Authentication Based on Keystroke Dynamics. Sensors and Materials, 30(3), 385396. [28]S.J. Nowlan and G. E. Hinton. Simplifying neural networks by soft weight-sharing. Neural Computation, 4(4), 1992. [29]V. Nair and G. E. Hinton. “Rectified linear units improve restricted boltzmann machines” . In Proc. 27th International Conference on Machine Learning, 2010. [30]Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998. [31]J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255. [32]M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks,” arXiv:1311.2901 [cs], Nov. 2013. [33]R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-Based Convolutional Networks for Accurate Object Detection and Segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 1, pp. 142–158, Jan. 2016. [34]J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders, “Selective Search for Object Recognition,” International Journal of Computer Vision, vol. 104, 2013. [35]K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” arXiv:1409.1556 [cs], Sep. 2014. [36]C. Szegedy et al., "Going deeper with convolutions," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9, 2015. [37]"TensorFlow," [Online]. Available: https://www.tensorflow.org/. [38]J. Redmon et al., "You only look once: Unified, real-time object detection," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788, 2016. [39]R. Girshick et al., "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580-587, 2014. [40]R. Girshick, "Fast r-cnn," in Proceedings of the IEEE international conference on computer vision, pp. 1440-1448, 2015. [41]S. Ren et al., "Faster r-cnn: Towards real-time object detection with region proposal networks," in Advances in neural information processing systems, pp. 91-99, 2015. [42]J. Redmon and A. Farhadi, "YOLO9000: better, faster, stronger. ," CoRR abs/1612.08242, 2016. [43]A. Neubeck and L. V. Gool, "Efficient Non-Maximum Suppression," in 18th International Conference on Pattern Recognition (ICPR'06), vol. 3, pp. 850-855, doi: 10.1109/ICPR.2006.479, 2006. [44]J. Redmon and A. Farhadi, "Yolov3: An incremental improvement," arXiv preprint arXiv:1804.02767, 2018. [45]A Closer Look at YOLOv3. [Online]. Available: https://www.cyberailab.com/home/a-closer-look-at-yolov3. [Accessed: 12 - Jun - 2019]. [46]Liu, Wei et al. "SSD: Single Shot Multibox Detector". Computer Vision – ECCV 2016 (2016): 21-37.
|