|
Barra, R., Castillo, C., Torres, J.P.M., 2007. Polycyclic aromatic hydrocarbons in the South American environment. In Reviews of environmental contamination and toxicokogy, Springer, 191, 1-22.
Bird, M.I., Wurster, C.M., de Paula Silva, P.H., Bass, A.M., de Nys, R., 2011. Algal biochar – production and properties. Bioresource Technology, 102 (2), 1886–1891.
Chen, W.H., Lin, B.J., Huang, M.Y., Chang, J.S., 2015a. Thermochemical conversion of microalgal biomass into biofuels: A review. Bioresource Technology, 184, 314–327.
Chen, W.H., Huang, M.Y., Chang, J.S., Chen, C.Y., Lee, W.J., 2015b. An energy analysis of torrefaction for upgrading microalga residue as a solid fuel. Bioresource Technology, 185, 285–293.
Ding D., Yang S., Qian X., Chen L., Cai T.,2020. Nitrogen-doping positively whilst sulfur-doping negatively affect the catalytic activity of biochar for the degradation of organic contaminant. Applied Catalysis B: Environmental, 263, 118348.
Dong, C.D., Chen, C.F., Chen, C.W., 2012. Determination of polycyclic aromatic hydrocarbons in industrial harbor sediments by GC-MS. International Journal of Environmental Research and Public Health, 9, 2175–2188.
Dong C.D., Chen C.W., Hung C.M., 2017. Synthesis of magnetic biochar from bamboo biomass to activate persulfate for the removal of polycyclic aromatic hydrocarbons in marine sediments. Bioresource Technology, 245, 188–195.
Dong, C.D., Lu, Y.C., Chang, J.H., Wang, T.H., Chen, C.W., Hung, C.M., 2019. Enhanced persulfate degradation of PAH-contaminated sediments using magnetic carbon microspheres as the catalyst substrate. Process Safety and Environmental Protection, 125, 219–227.
Dong C.D., Chen C.W., Nguyen T.B., Huang C.P., Hung C.M., 2020. Degradation of phthalate esters in marine sediments by persulfate over Fe–Ce/biochar composites. Chemical Engineering Journal, 384, 123301.
Fernandez-Gonzalez V., Moscoso-Perez C., Muniategui-Lorenzo S., Lopez-Mahia P., Prada-Rodriguez D., 2017. Reliable, rapid and simple method for the analysis of phthalates in sediments by ultrasonic solvent extraction followed by head space-solid phase microextraction gas chromatography mass spectrometry determination. Talanta, 162, 648-653.
Ghauch, A., Tuqan, A.M., Tuqan, N., Geryes, S., 2012. Methylene blue discoloration by heated persulfate in aqueous solution. Chemical Engineering Journal, 213, 259-271.
Huang, Y., Guo, X., Ding, Z., Chen, Y., Hu, X., 2020. Environmentally persistent free radicals in biochar derived from Laminaria japonica grown in different habitats. Journal of Analytical and Applied Pyrolysis, 151, 104941.
Hung, C.M., Chen, C.W., Jhuang, Y.J., Dong, C.D., 2016. Fe3O4 magnetic nanoparticles: characterization and performance exemplified by the degradation of methylene blue in the presence of persulfate. Journal of Advanced Oxidation Technologies, 19, 43–51.
Hung, C.M., Huang, C.P., Hsieh, S.L., Tsai, M.L., Chen, C.W., Dong, C.D., 2020. Biochar derived from red algae for efficient remediation of 4-nonylphenol from marine sediments. Chemosphere, 254, 126919.
Hung C.M., Huang C.P., Chen C.W., Hsieh S.L., Dong C.D., 2021a. Effects of biochar on catalysis treatment of 4-nonylphenol in estuarine sediment and associated microbial community structure. Environmental pollution, 268, 115673.
Hung, C.M., Huang, C.P., Cheng, J.W., Chen, C.W., Dong, C.D., 2021b. Production and characterization of a high value-added seaweed-derived biochar: Optimization of pyrolysis conditions and evaluation for sediment treatment. Journal of Analytical and Applied Pyrolysis, 155.
Jang J., Forbes V.E., Sadowsky M.J., 2000. Lack of evidence for the role of gut microbiota in PAH biodegradation by the polychaete Capitella teleta. Science of the Total Environment, 725, 138356.
Jafari, A.J., Kakavandi, B., Jaafarzadeh, N., Kalantary, R.R, Ahmadi, M., Babaei, A.A., 2017. Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator: Adsorption and degradation studies. Journal of Industrial and Engineering Chemistry, 45, 323–333.
Kołtowski, M., Charmas, B., Skubiszewska-Zięba, J., Oleszczuk, P., 2017. Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity. Ecotoxicology and Environmental Safety, 136, 119–125.
Lee, J., von Gunten, U., Kim, J.H., 2020. Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environmental Science & Technology, 54, 3064–3081.
Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., Jiang, S., Li, H., Huang, H., 2021. An overview on engineering the surface area and porosity of biochar. Science of the Total Environment, 763, 144204.
Li L., Lai C., Huang F., Cheng M., Zeng G., Huang D., Li B., Liu S., Zhang M., Qin L., Li M., He J., Zhang Y., Chen L., 2019. Degradation of naphthalene with magnetic bio-char activate hydrogen peroxide: synergism of bio-char and Fe‒Mn binary oxides. Water Research, 160, 238–248.
Liao, X., Wu, Z., Li, Y., Luo, J., Su, C., 2018. Enhanced degradation of polycyclic aromatic hydrocarbons by indigenous microbes combined with chemical oxidation. Chemosphere, 213, 551–558.
Liu, X., Shen, F., Qi, X., 2019. Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw. Science of the Total Environment, 666, 694-702.
Mandal, S., Donner, E., Vasileiadis, S., Skinner, W., Smith, E., Lombi, E., 2018. The effect of biochar feedstock, pyrolysis temperature, and application rate on the reduction of ammonia volatilization from biochar-amended soil. Science of The Total Environment, 627, 942–950.
Maletić S.P., Beljin J.M., Rončević S.D., Grgić M.G., Dalmacija B.D., 2019. State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments: sources, fate, bioavailability and remediation techniques. Journal of Hazardous Materials, 365, 467–482.
Mandalakis, M., Gustafsson, Ö., Reddy, C.M. Xu, L., 2004. Radiocarbon apportionment of fossil versus biofuel combustion sources of polycyclic aromatic hydrocarbonsin the Stockholm metropolitan area. Environmental Science & Technology, 38(20), 5344–5349.
One, A.M.P., Cornlissen, G., and Breedveld, G.D., 2006. Relation between PAH and black Carbon contents in size fractions of Norwegian harbor sediments. Environment Pollution, 141, 370-380.
Ren T., Chen N., Wan Mahari W.A., Xu C., Feng H., Ji X., Yin Q., Chen P., Zhu S., Liu H., Liu G., Li L., Lam S.S., 2021. Biochar for cadmium pollution mitigation and stress resistance in tobacco growth. Environmental Research, 192, 110273.
Wu, Y., Guo, J., Han, Y., Zhu, J., Zhou, L. & Lan, Y. 2018. Insight into the mechanism of persulfate activated by rice straw biochar for the degradation of aniline. Chemosphere, 200, 373-379.
Wan Mahari W.A., Nam W.L., Sonne C., Peng W., Phang X.Y., Liew R.K., Yek P.N.Y., Lee X.Y., Wen O.W., Show P.L., Chen W.H., Chang J.S., Lam S.S., 2020. Applying microwave vacuum pyrolysis to design moisture retention and pH neutralizing palm kernel shell biochar for mushroom production. Bioresource Technology, 312, 123572.
Xie, Y., Hu, W., Wang, X., Tong, W., Li, P., Zhou, H., Wang, Y., Zhang, Y., 2020. Molten salt induced nitrogen-doped biochar nanosheets as highly efficient peroxymonosulfate catalyst for organic pollutant degradation. Environmental Pollution, 260, 114053.
Yang, Y., Ye, S., Zhang, C., Zeng, G., Tan, X., Song, B., Zhang, P., Yang, H., Li, M., Chen, Q., 2021. Application of biochar for the remediation of polluted sediments. Journal of Hazardous Materials, 404, 124052.
Yunker M.B., Macdonald R.W., Vingarzan R., Mitchell R.H., Goyette D., Sylvestre S., 2002. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489-515.
Ye S., Zeng G., Tan X., Wu H., Liang J., Song B., Tang N., Zhang P., Yang Y., Chen Q., Li X., 2020. Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer. Applied Catalysis B: Environmental, 269, 118850.
Zhao X., An Q.D., Xiao Z.Y., Zhai S.R., Shi Z., 2018. Seaweed-derived multifunctional nitrogen/cobalt-codoped carbonaceous beads for relatively high-efficient peroxymonosulfate activation for organic pollutants degradation. Chemical Engineering Journal, 353, 7467–7596.
國家環境毒物研究中心http//nehrc.nhri.org.tw/toxic/index_sim.php 美國國家環境保護局https://www.epa.gov/lep/traditional-chinese 台灣行政院環保署https://www.epa.gov.tw/
|