|
[1] I.E.A.T. SDG7, The Energy Progress Report, 2021. IEA, 2021. [2] L. Pingkuo, H. Xue, Comparative analysis on similarities and differences of hydrogen energy development in the World's top 4 largest economies: A novel framework, International Journal of Hydrogen Energy 47(16) (2022) 9485-9503. [3] X. Lü, Y. Wu, J. Lian, Y. Zhang, C. Chen, P. Wang, L. Meng, Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm, Energy Conversion and Management 205 (2020) 112474. [4] B. plc, Bp Statistical Review of World Energy 2022, 2022. [5] D.R. Dekel, S. Willdorf, U. Ash, M. Amar, S. Pusara, S. Dhara, S. Srebnik, C.E. Diesendruck, The critical relation between chemical stability of cations and water in anion exchange membrane fuel cells environment, Journal of Power Sources 375 (2018) 351-360. [6] S.H. Lee, J.C. Rasaiah, Proton transfer and the mobilities of the H+ and OH− ions from studies of a dissociating model for water, The Journal of chemical physics 135(12) (2011) 124505. [7] C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures, Chemical Society Reviews 45(3) (2016) 517-531. [8] G.-S. Kang, J.-H. Jang, S.-Y. Son, Y.-K. Lee, D.C. Lee, S.J. Yoo, S. Lee, H.-I. Joh, Pyrrolic N wrapping strategy to maximize the number of single-atomic Fe-Nx sites for oxygen reduction reaction, Journal of Power Sources 520 (2022) 230904. [9] J. Lilloja, E. Kibena-Põldsepp, A. Sarapuu, M. Käärik, J. Kozlova, P. Paiste, A. Kikas, A. Treshchalov, J. Leis, A. Tamm, Transition metal and nitrogen-doped mesoporous carbons as cathode catalysts for anion-exchange membrane fuel cells, Applied Catalysis B: Environmental 306 (2022) 121113. [10] L. Yang, D. Cheng, H. Xu, X. Zeng, X. Wan, J. Shui, Z. Xiang, D. Cao, Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction, Proceedings of the National Academy of Sciences 115(26) (2018) 6626-6631. [11] R. Zhang, W. Huang, P. Lyu, S. Yan, X. Wang, J. Ju, Polyurea for blast and impact protection: A review, Polymers 14(13) (2022) 2670. [12] R. O'hayre, S.-W. Cha, W. Colella, F.B. Prinz, Fuel cell fundamentals, John Wiley & Sons2016. [13] D. Qiu, L. Peng, P. Yi, W. Lehnert, X. Lai, Review on proton exchange membrane fuel cell stack assembly: Quality evaluation, assembly method, contact behavior and process design, Renewable and Sustainable Energy Reviews 152 (2021) 111660. [14] B. Sundén, Chapter 8 - Fuel cell types - overview, in: B. Sundén (Ed.), Hydrogen, Batteries and Fuel Cells, Academic Press2019, pp. 123-144. [15] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications, International journal of hydrogen energy 35(17) (2010) 9349-9384. [16] B.C. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature 414(6861) (2001) 345-352. [17] D. Li, E.J. Park, W. Zhu, Q. Shi, Y. Zhou, H. Tian, Y. Lin, A. Serov, B. Zulevi, E.D. Baca, Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers, Nature Energy 5(5) (2020) 378-385. [18] G. Das, J.-H. Choi, P.K.T. Nguyen, D.-J. Kim, Y.S. Yoon, Anion Exchange Membranes for Fuel Cell Application: A Review, Polymers 14(6) (2022) 1197. [19] H.A. Firouzjaie, W.E. Mustain, Catalytic advantages, challenges, and priorities in alkaline membrane fuel cells, ACS Publications, 2019, pp. 225-234. [20] T. Omasta, L. Wang, X. Peng, C. Lewis, J. Varcoe, W.E. Mustain, Importance of balancing membrane and electrode water in anion exchange membrane fuel cells, Journal of Power Sources 375 (2018) 205-213. [21] Z. Pan, L. An, T. Zhao, Z. Tang, Advances and challenges in alkaline anion exchange membrane fuel cells, Progress in Energy and Combustion Science 66 (2018) 141-175. [22] S. Jang, M. Her, S. Kim, J.-H. Jang, J.E. Chae, J. Choi, M. Choi, S.M. Kim, H.-J. Kim, Y.-H. Cho, Membrane/electrode interface design for effective water management in alkaline membrane fuel cells, ACS applied materials & interfaces 11(38) (2019) 34805-34811. [23] C.-Y. Chen, S.-C. Su, Effects of assembly torque on a proton exchange membrane fuel cell with stamped metallic bipolar plates, Energy 159 (2018) 440-447. [24] J. Hao, X. Gao, Y. Jiang, H. Zhang, J. Luo, Z. Shao, B. Yi, Crosslinked high-performance anion exchange membranes based on poly (styrene-b-(ethylene-co-butylene)-b-styrene), Journal of Membrane Science 551 (2018) 66-75. [25] B.S. Machado, N. Chakraborty, P.K. Das, Influences of flow direction, temperature and relative humidity on the performance of a representative anion exchange membrane fuel cell: A computational analysis, International Journal of Hydrogen Energy 42(9) (2017) 6310-6323. [26] M. Hren, M. Božič, D. Fakin, K.S. Kleinschek, S. Gorgieva, Alkaline membrane fuel cells: anion exchange membranes and fuels, Sustainable Energy & Fuels 5(3) (2021) 604-637. [27] Y. Sun, S. Polani, F. Luo, S. Ott, P. Strasser, F. Dionigi, Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells, Nature communications 12(1) (2021) 5984. [28] M.M. Hossen, M.S. Hasan, M.R.I. Sardar, J. bin Haider, K. Tammeveski, P. Atanassov, State-of-the-art and developmental trends in platinum group metal-free cathode catalyst for anion exchange membrane fuel cell (AEMFC), Applied Catalysis B: Environmental (2022) 121733. [29] K. Jiao, J. Xuan, Q. Du, Z. Bao, B. Xie, B. Wang, Y. Zhao, L. Fan, H. Wang, Z. Hou, Designing the next generation of proton-exchange membrane fuel cells, Nature 595(7867) (2021) 361-369. [30] J. Zhang, W. Zhu, T. Huang, C. Zheng, Y. Pei, G. Shen, Z. Nie, D. Xiao, Y. Yin, M.D. Guiver, Recent insights on catalyst layers for anion exchange membrane fuel cells, Advanced Science 8(15) (2021) 2100284. [31] S. Park, J.-W. Lee, B.N. Popov, A review of gas diffusion layer in PEM fuel cells: Materials and designs, International Journal of Hydrogen Energy 37(7) (2012) 5850-5865. [32] Y. Yang, X. Zhou, B. Li, C. Zhang, Recent progress of the gas diffusion layer in proton exchange membrane fuel cells: Material and structure designs of microporous layer, International Journal of Hydrogen Energy 46(5) (2021) 4259-4282. [33] A. Ozden, S. Shahgaldi, X. Li, F. Hamdullahpur, A review of gas diffusion layers for proton exchange membrane fuel cells—With a focus on characteristics, characterization techniques, materials and designs, Progress in Energy and Combustion Science 74 (2019) 50-102. [34] X. Li, I. Sabir, Review of bipolar plates in PEM fuel cells: Flow-field designs, International journal of hydrogen energy 30(4) (2005) 359-371. [35] A. Hermann, T. Chaudhuri, P. Spagnol, Bipolar plates for PEM fuel cells: A review, International journal of hydrogen Energy 30(12) (2005) 1297-1302. [36] T. Wilberforce, Z. El Hassan, E. Ogungbemi, O. Ijaodola, F. Khatib, A. Durrant, J. Thompson, A. Baroutaji, A. Olabi, A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells, Renewable and sustainable energy reviews 111 (2019) 236-260. [37] Z. Xing, L. Hu, D.S. Ripatti, X. Hu, X. Feng, Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment, Nature communications 12(1) (2021) 136. [38] I. Fouzaï, S. Gentil, V.C. Bassetto, W.O. Silva, R. Maher, H.H. Girault, Catalytic layer-membrane electrode assembly methods for optimum triple phase boundaries and fuel cell performances, Journal of Materials Chemistry A 9(18) (2021) 11096-11123. [39] J. Zhang, Y. Pei, W. Zhu, Y. Liu, Y. Yin, Y. Qin, M.D. Guiver, Ionomer dispersion solvent influence on the microstructure of Co–N–C catalyst layers for anion exchange membrane fuel cell, Journal of Power Sources 484 (2021) 229259. [40] N. Chen, Y.M. Lee, Anion exchange polyelectrolytes for membranes and ionomers, Progress in Polymer Science 113 (2021) 101345. [41] M. Jouin, R. Gouriveau, D. Hissel, M.-C. Péra, N. Zerhouni, Prognostics and Health Management of PEMFC–State of the art and remaining challenges, International Journal of Hydrogen Energy 38(35) (2013) 15307-15317. [42] M.M. Hossen, K. Artyushkova, P. Atanassov, A. Serov, Synthesis and characterization of high performing Fe-NC catalyst for oxygen reduction reaction (ORR) in Alkaline Exchange Membrane Fuel Cells, Journal of Power Sources 375 (2018) 214-221. [43] E. Yeager, Dioxygen electrocatalysis: mechanisms in relation to catalyst structure, J. Mol. Catal.;(Switzerland) 38(1/2) (1986). [44] T. Zhan, X. Liu, S. Lu, W. Hou, Nitrogen doped NiFe layered double hydroxide/reduced graphene oxide mesoporous nanosphere as an effective bifunctional electrocatalyst for oxygen reduction and evolution reactions, Applied Catalysis B: Environmental 205 (2017) 551-558. [45] C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Synthesis of phosphorus‐doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries, Advanced materials 25(35) (2013) 4932-4937. [46] G.L. Tian, M.Q. Zhao, D. Yu, X.Y. Kong, J.Q. Huang, Q. Zhang, F. Wei, Nitrogen‐doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction, Small 10(11) (2014) 2251-2259. [47] R. Zhou, Y. Zheng, M. Jaroniec, S.-Z. Qiao, Determination of the electron transfer number for the oxygen reduction reaction: from theory to experiment, Acs Catalysis 6(7) (2016) 4720-4728. [48] S. Alayoglu, A.U. Nilekar, M. Mavrikakis, B. Eichhorn, Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen, Nature materials 7(4) (2008) 333-338. [49] W. Hong, X. Shen, F. Wang, X. Feng, J. Li, Z. Wei, A bimodal-pore strategy for synthesis of Pt 3 Co/C electrocatalyst toward oxygen reduction reaction, Chemical Communications 57(35) (2021) 4327-4330. [50] Y.-W. Cheng, W.-Y. Huang, K.-S. Ho, T.-H. Hsieh, L.-C. Jheng, Y.-M. Kuo, Fe, N-doped metal organic framework prepared by the calcination of iron chelated polyimines as the cathode-catalyst of proton exchange membrane fuel cells, Polymers 13(21) (2021) 3850. [51] T.-H. Hsieh, S.-N. Chen, Y.-Z. Wang, K.-S. Ho, J.-K. Chuang, L.-C. Ho, Cobalt-Doped Carbon Nitride Frameworks Obtained from Calcined Aromatic Polyimines as Cathode Catalyst of Anion Exchange Membrane Fuel Cells, Membranes 12(1) (2022) 74. [52] X. Zhou, S. Tang, Y. Yin, S. Sun, J. Qiao, Hierarchical porous N-doped graphene foams with superior oxygen reduction reactivity for polymer electrolyte membrane fuel cells, Applied Energy 175 (2016) 459-467. [53] L. Xue, Y. Li, X. Liu, Q. Liu, J. Shang, H. Duan, L. Dai, J. Shui, Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells, Nature Communications 9(1) (2018) 3819. [54] O.-H. Kim, Y.-H. Cho, D.Y. Chung, M.J. Kim, J.M. Yoo, J.E. Park, H. Choe, Y.-E. Sung, Facile and gram-scale synthesis of metal-free catalysts: toward realistic applications for fuel cells, Scientific Reports 5(1) (2015) 1-8. [55] J. Zhu, M. Xiao, P. Song, J. Fu, Z. Jin, L. Ma, J. Ge, C. Liu, Z. Chen, W. Xing, Highly polarized carbon nano-architecture as robust metal-free catalyst for oxygen reduction in polymer electrolyte membrane fuel cells, Nano Energy 49 (2018) 23-30. [56] L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction, Energy & Environmental Science 5(7) (2012) 7936-7942. [57] Y. Xue, D. Yu, L. Dai, R. Wang, D. Li, A. Roy, F. Lu, H. Chen, Y. Liu, J. Qu, Three-dimensional B, N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction, Physical Chemistry Chemical Physics 15(29) (2013) 12220-12226. [58] D.-S. Yang, D. Bhattacharjya, S. Inamdar, J. Park, J.-S. Yu, Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media, Journal of the American Chemical Society 134(39) (2012) 16127-16130. [59] Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X.a. Chen, S. Huang, Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction, ACS nano 6(1) (2012) 205-211. [60] X. Sun, Y. Zhang, P. Song, J. Pan, L. Zhuang, W. Xu, W. Xing, Fluorine-doped carbon blacks: highly efficient metal-free electrocatalysts for oxygen reduction reaction, ACS catalysis 3(8) (2013) 1726-1729. [61] L. Zhang, Z. Xia, Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells, The Journal of Physical Chemistry C 115(22) (2011) 11170-11176. [62] L. Zhang, J. Niu, M. Li, Z. Xia, Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells, The Journal of Physical Chemistry C 118(7) (2014) 3545-3553. [63] J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual‐doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance, Angewandte Chemie 124(46) (2012) 11664-11668. [64] W. Chen, M. Wan, Q. Liu, X. Xiong, F. Yu, Y. Huang, Heteroatom‐doped carbon materials: synthesis, mechanism, and application for sodium‐ion batteries, Small Methods 3(4) (2019) 1800323. [65] D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science 351(6271) (2016) 361-365. [66] H. Metiu, S. Chrétien, Z. Hu, B. Li, X. Sun, Chemistry of Lewis acid–base pairs on oxide surfaces, The Journal of Physical Chemistry C 116(19) (2012) 10439-10450. [67] R. Ma, G. Lin, Y. Zhou, Q. Liu, T. Zhang, G. Shan, M. Yang, J. Wang, A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts, npj Computational Materials 5(1) (2019) 78. [68] H. Liu, M.-Q. Wang, Z.-Y. Chen, H. Chen, M.-W. Xu, S.-J. Bao, Design and synthesis of Co–N–C porous catalyst derived from metal organic complexes for highly effective ORR, Dalton transactions 46(45) (2017) 15646-15650. [69] G.P. Hansen, R.J. Dominguez, N.C. Hoppens, E.S. Shields, J.W. Bulluck, R.A. Rushing, Novel polyurea fiber, Google Patents, 2011. [70] Q.-C. Cao, X.-B. Ding, F. Li, Y.-H. Qin, C. Wang, Zinc, sulfur and nitrogen co-doped carbon from sodium chloride/zinc chloride-assisted pyrolysis of thiourea/sucrose for highly efficient oxygen reduction reaction in both acidic and alkaline media, Journal of colloid and interface science 576 (2020) 139-146. [71] J. Chen, H. Zhang, P. Liu, Y. Li, G. Li, T. An, H. Zhao, Thiourea sole doping reagent approach for controllable N, S co-doping of pre-synthesized large-sized carbon nanospheres as electrocatalyst for oxygen reduction reaction, Carbon 92 (2015) 339-347. [72] Q. Li, W. Chen, H. Xiao, Y. Gong, Z. Li, L. Zheng, X. Zheng, W. Yan, W.C. Cheong, R. Shen, Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction, Advanced materials 30(25) (2018) 1800588. [73] S.-B. Ren, X.-L. Chen, P.-X. Li, D.-Y. Hu, H.-L. Liu, W. Chen, W.-B. Xie, Y. Chen, X.-L. Yang, D.-M. Han, Nitrogen and sulfur dual-doped carbon nanotube derived from a thiazolothiazole based conjugated microporous polymer as efficient metal-free electrocatalysts for oxygen reduction reaction, Journal of Power Sources 461 (2020) 228145. [74] Y. Feng, Y. Hasegawa, T. Suga, H. Nishide, L. Yang, G. Chen, S. Li, Tuning conformational H-bonding arrays in aromatic/alicyclic polythiourea toward high energy-storable dielectric material, Macromolecules 52(22) (2019) 8781-8787. [75] X. Fu, N. Li, B. Ren, G. Jiang, Y. Liu, F.M. Hassan, D. Su, J. Zhu, L. Yang, Z. Bai, Tailoring FeN4 sites with edge enrichment for boosted oxygen reduction performance in proton exchange membrane fuel cell, Advanced Energy Materials 9(11) (2019) 1803737. [76] P. Wang, X. Ma, Q. Li, B. Yang, J. Shang, Y. Deng, Green synthesis of polyureas from CO 2 and diamines with a functional ionic liquid as the catalyst, RSC advances 6(59) (2016) 54013-54019. [77] J. Shang, S. Liu, X. Ma, L. Lu, Y. Deng, A new route of CO 2 catalytic activation: Syntheses of N-substituted carbamates from dialkyl carbonates and polyureas, Green chemistry 14(10) (2012) 2899-2906. [78] W.H. Awad, C.A. Wilkie, Investigation of the thermal degradation of polyurea: the effect of ammonium polyphosphate and expandable graphite, Polymer 51(11) (2010) 2277-2285. [79] F. Dong, Y. Sun, L. Wu, M. Fu, Z. Wu, Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance, Catalysis Science & Technology 2(7) (2012) 1332-1335. [80] C. Gao, Y.Z. Jin, H. Kong, R.L. Whitby, S.F. Acquah, G. Chen, H. Qian, A. Hartschuh, S. Silva, S. Henley, Polyurea-functionalized multiwalled carbon nanotubes: synthesis, morphology, and Raman spectroscopy, The Journal of Physical Chemistry B 109(24) (2005) 11925-11932. [81] Q. Lai, J. Zheng, Z. Tang, D. Bi, J. Zhao, Y. Liang, Optimal configuration of N‐doped carbon defects in 2D turbostratic carbon nanomesh for advanced oxygen reduction electrocatalysis, Angewandte Chemie 132(29) (2020) 12097-12104. [82] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and applied chemistry 87(9-10) (2015) 1051-1069. [83] G.M. Lu, X.S. Zhao, Nanoporous materials: science and engineering, World Scientific2004. [84] J. Guo, B. Li, Q. Zhang, Q. Liu, Z. Wang, Y. Zhao, J. Shui, Z. Xiang, Highly Accessible Atomically Dispersed Fe‐Nx Sites Electrocatalyst for Proton‐Exchange Membrane Fuel Cell, Advanced Science 8(5) (2021) 2002249. [85] F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J.-P. Dodelet, G. Wu, H.T. Chung, C.M. Johnston, P. Zelenay, Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells, Energy & Environmental Science 4(1) (2011) 114-130. [86] S.H. Lee, J. Kim, D.Y. Chung, J.M. Yoo, H.S. Lee, M.J. Kim, B.S. Mun, S.G. Kwon, Y.-E. Sung, T. Hyeon, Design principle of Fe–N–C electrocatalysts: how to optimize multimodal porous structures?, Journal of the American Chemical Society 141(5) (2019) 2035-2045. [87] N.P. Subramanian, X. Li, V. Nallathambi, S.P. Kumaraguru, H. Colon-Mercado, G. Wu, J.-W. Lee, B.N. Popov, Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells, Journal of Power Sources 188(1) (2009) 38-44. [88] G. Liu, X. Li, P. Ganesan, B.N. Popov, Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells, Electrochimica Acta 55(8) (2010) 2853-2858. [89] V. Strelko, V. Kuts, P. Thrower, On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions, Carbon 10(38) (2000) 1499-1503. [90] C.V. Rao, C.R. Cabrera, Y. Ishikawa, In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction, The Journal of Physical Chemistry Letters 1(18) (2010) 2622-2627. [91] Z. Lin, G.H. Waller, Y. Liu, M. Liu, C.-p. Wong, 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction, Nano energy 2(2) (2013) 241-248. [92] Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction, Chemical Society Reviews 44(8) (2015) 2168-2201. [93] J.-Z. Wang, S.-L. Chou, J. Chen, S.-Y. Chew, G.-X. Wang, K. Konstantinov, J. Wu, S.-X. Dou, H.K. Liu, like free-standing polypyrrole and polypyrrole–LiFePO4 composite films for flexible and bendable rechargeable battery, Electrochemistry Communications 10(11) (2008) 1781-1784. [94] J.-C. Li, X. Qin, P.-X. Hou, M. Cheng, C. Shi, C. Liu, H.-M. Cheng, M. Shao, Identification of active sites in nitrogen and sulfur co-doped carbon-based oxygen reduction catalysts, Carbon 147 (2019) 303-311. [95] G. Chao, L. Zhang, D. Wang, S. Chen, H. Guo, K. Xu, W. Fan, T. Liu, Activation of graphitic nitrogen sites for boosting oxygen reduction, Carbon 159 (2020) 611-616. [96] Y. Cheng, Y. Wang, Q. Wang, Z. Liao, N. Zhang, Y. Guo, Z. Xiang, Hierarchically porous metal-free carbon with record high mass activity for oxygen reduction and Zn-air batteries, Journal of Materials Chemistry A 7(16) (2019) 9831-9836. [97] Z. Zhao, M. Li, L. Zhang, L. Dai, Z. Xia, Design principles for heteroatom‐doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal–air batteries, Advanced Materials 27(43) (2015) 6834-6840. [98] I.Y. Jeon, S. Zhang, L. Zhang, H.J. Choi, J.M. Seo, Z. Xia, L. Dai, J.B. Baek, Edge‐selectively sulfurized graphene nanoplatelets as efficient metal‐free electrocatalysts for oxygen reduction reaction: the electron spin effect, Advanced Materials 25(42) (2013) 6138-6145. [99] O. van der Heijden, S. Park, J.J. Eggebeen, M.T. Koper, Non‐kinetic effects convolute activity and Tafel analysis for the alkaline oxygen evolution reaction on NiFeOOH electrocatalysts, Angewandte Chemie 135(7) (2023) e202216477. [100] G. Daniel, M. Mazzucato, R. Brandiele, L. De Lazzari, D. Badocco, P. Pastore, T. Kosmala, G. Granozzi, C. Durante, Sulfur Doping versus Hierarchical Pore Structure: The Dominating Effect on the Fe–N–C Site Density, Activity, and Selectivity in Oxygen Reduction Reaction Electrocatalysis, ACS Applied Materials & Interfaces 13(36) (2021) 42693-42705. [101] Q. Pang, J. Tang, H. Huang, X. Liang, C. Hart, K.C. Tam, L.F. Nazar, A nitrogen and sulfur dual‐doped carbon derived from Polyrhodanine@ Cellulose for advanced lithium–sulfur batteries, Advanced materials 27(39) (2015) 6021-6028. [102] J. Tong, W. Ma, L. Bo, T. Li, W. Li, Y. Li, Q. Zhang, Nitrogen-doped hollow carbon spheres as highly effective multifunctional electrocatalysts for fuel cells, Zn–air batteries, and water-splitting electrolyzers, Journal of Power Sources 441 (2019) 227166. [103] S.M. Unni, S.N. Bhange, R. Illathvalappil, N. Mutneja, K.R. Patil, S. Kurungot, Nitrogen‐Induced Surface Area and Conductivity Modulation of Carbon Nanohorn and Its Function as an Efficient Metal‐Free Oxygen Reduction Electrocatalyst for Anion‐Exchange Membrane Fuel Cells, Small 11(3) (2015) 352-360. [104] C. Venkateswara Rao, Y. Ishikawa, Activity, selectivity, and anion-exchange membrane fuel cell performance of virtually metal-free nitrogen-doped carbon nanotube electrodes for oxygen reduction reaction, The Journal of Physical Chemistry C 116(6) (2012) 4340-4346. [105] S. Akula, S.G. Peera, A.K. Sahu, Uncovering N, S, F Tri-doped heteroatoms on porous carbon as a metal-free oxygen reduction reaction catalyst for polymer electrolyte fuel cells, Journal of The Electrochemical Society 166(13) (2019) F897. [106] A. Arunchander, S.G. Peera, S.K. Panda, S. Chellammal, A. Sahu, Simultaneous co-doping of N and S by a facile in-situ polymerization of 6-N, N-dibutylamine-1, 3, 5-triazine-2, 4-dithiol on graphene framework: An efficient and durable oxygen reduction catalyst in alkaline medium, Carbon 118 (2017) 531-544. [107] J.W. To, J.W.D. Ng, S. Siahrostami, A.L. Koh, Y. Lee, Z. Chen, K.D. Fong, S. Chen, J. He, W.-G. Bae, High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration, Nano Research 10 (2017) 1163-1177. [108] M.-J. Kim, J.E. Park, S. Kim, M.S. Lim, A. Jin, O.-H. Kim, M.J. Kim, K.-S. Lee, J. Kim, S.-S. Kim, Biomass-derived air cathode materials: pore-controlled S, N-co-doped carbon for fuel cells and metal–air batteries, ACS catalysis 9(4) (2019) 3389-3398. [109] T. Palaniselvam, M.O. Valappil, R. Illathvalappil, S. Kurungot, Nanoporous graphene by quantum dots removal from graphene and its conversion to a potential oxygen reduction electrocatalyst via nitrogen doping, Energy & Environmental Science 7(3) (2014) 1059-1067. [110] C. Van Pham, M. Klingele, B. Britton, K.R. Vuyyuru, T. Unmuessig, S. Holdcroft, A. Fischer, S. Thiele, Tridoped reduced graphene oxide as a metal‐free catalyst for oxygen reduction reaction demonstrated in acidic and alkaline polymer electrolyte fuel cells, Advanced Sustainable Systems 1(5) (2017) 1600038. [111] C.V. Pham, B. Britton, T. Böhm, S. Holdcroft, S. Thiele, Doped, Defect‐Enriched Carbon Nanotubes as an Efficient Oxygen Reduction Catalyst for Anion Exchange Membrane Fuel Cells, Advanced materials interfaces 5(12) (2018) 1800184. [112] J. Lilloja, E. Kibena-Poldsepp, A. Sarapuu, A. Kikas, V. Kisand, M. Käärik, M. Merisalu, A. Treshchalov, J. Leis, V. Sammelselg, Nitrogen-doped carbide-derived carbon/carbon nanotube composites as cathode catalysts for anion exchange membrane fuel cell application, Applied Catalysis B: Environmental 272 (2020) 119012. [113] M. Wang, J. Wang, Y. Hou, D. Shi, D. Wexler, S.D. Poynton, R.C. Slade, W. Zhang, H. Liu, J. Chen, N-doped crumpled graphene derived from vapor phase deposition of PPy on graphene aerogel as an efficient oxygen reduction reaction electrocatalyst, ACS applied materials & interfaces 7(13) (2015) 7066-7072. [114] Y.J. Sa, C. Park, H.Y. Jeong, S.H. Park, Z. Lee, K.T. Kim, G.G. Park, S.H. Joo, Carbon nanotubes/heteroatom‐doped carbon core–sheath nanostructures as highly active, metal‐free oxygen reduction electrocatalysts for alkaline fuel cells, Angewandte Chemie 126(16) (2014) 4186-4190. [115] S. Lee, M. Choun, Y. Ye, J. Lee, Y. Mun, E. Kang, J. Hwang, Y.H. Lee, C.H. Shin, S.H. Moon, Designing a highly active metal‐free oxygen reduction catalyst in membrane electrode assemblies for alkaline fuel cells: effects of pore size and doping‐site position, Angewandte Chemie International Edition 54(32) (2015) 9230-9234. [116] Y. Lu, L. Wang, K. Preuß, M. Qiao, M.-M. Titirici, J. Varcoe, Q. Cai, Halloysite-derived nitrogen doped carbon electrocatalysts for anion exchange membrane fuel cells, Journal of Power Sources 372 (2017) 82-90.
|