1.陳宗嶽、王廷瑜,防疫大作戰,科學發展473,26-31,2012。
2.呂明毅(1997),「石斑魚的繁養殖」,漁業技術推廣,第49期。
3.張清風 (2005). "魚類性別轉變的奧妙." 科學發展 385: 18-21.
4.曾文陽,(1987),「石斑魚養殖學應用篇」,前程出版社。
5.Nelson, J. S., 1994. Fishes of the World. Third edition. John Wiley & Sons, New York, USA, p. 600.
6.莊曉慧(2007)。臺灣石斑魚產業競爭力與策略之分析。國立臺灣海洋大學碩士論文。7.王怡婷(2014)。創傷弧菌與腸炎弧菌二價疫苗及其免疫雞蛋黃 IgY 應用於養殖石斑魚之研究。國立臺灣海洋大學碩士論文。8.陳祖淞(2013)。點帶石斑魚神經性壞死病毒准種特性研究。國立成功大學碩士論文。9.梁志達 (1976). "鑲點石斑養殖之初步試驗." 中國水產 279: 21-24.
10.林展群(2015)。含核苷酸低魚粉飼料對點帶石斑成長及生理影響之研究。國立高雄海洋科技大學碩士論文。11.石斑魚主題館-農業知識入口網(2023)。石斑魚簡介。檢自https://kmweb.coa.gov.tw/subject/index.php?id=70(July. 14, 2022)
12.Sluka, R., M. Chiappone, and K.S. Sealey, Influence of habitat on grouper abundance in the Florida Keys, USA. Journal of fish biology, 2001. 58(3): p. 682-700.
13.陳詳鵬(2013)。CpG 寡去氧核醣核酸應用於神經壞死病毒DNA疫苗之研究。國立臺灣海洋大學碩士論文。14.朱鴻鈞 (2011). "全球石斑魚市場發展與趨勢." 臺灣經濟研究院.
15.Ramasamy, H., B. Chellam, and M. Heo, Molecular studies, disease status and prophylactic measures in grouper aquaculture: economic importance, diseases and immunology. Aquaculture, 2010. 309(1/4): p. 1-14.
16.江翰鍇(2014)。石斑魚神經壞死病毒及虹彩病毒多價重組次單位疫苗之開發。國立成功大學碩士論文。17.邱同緯(2012)。益生菌對珍珠龍膽石斑魚成長率及存活率影響之研究。國立高雄海洋科技大學碩士論文。18.徐蓉彥(2016)。探討屏東沿海地區地層下陷對海水入侵之影響。國立成功大學碩士論文。19.李恩誠(2020)。應用Sentinel-1A影像與SBAS方法監測屏東沿海地區地層下陷。國立交通大學碩士論文。20.郭東霖(2017)。磺胺類抗生素在水產養殖場環境中之分解與其相關菌相分析。東吳大學碩士論文。21.蔡喬欣(2012)。養殖密度、換水率及添加光合菌(Rhodobium sp.)和藻水對於羅氏沼蝦(Macrobrachium rosenbergii)的成長、活存及水質因子之影響。國立東華大學碩士論文。22.簡偉倫(2020)。評估本土有益菌對水質改善與魚菜共生系統效率提升之影響。明志科技大學碩士論文。23.Treasurer, J., et al., Social, stocking density and dietary effects on the failure of farmed cod Gadus morhua. Aquaculture, 2011. 322: p. 241-248.
24.Suckling, C.C., D. Terrey, and A.J. Davies, Optimising stocking density for the commercial cultivation of sea urchin larvae. Aquaculture, 2018. 488: p. 96-104.
25.Arifin, O.Z., et al., Effects of stocking density on survival, food intake and growth of giant gourami (Osphronemus goramy) larvae reared in a recirculating aquaculture system. Aquaculture, 2019. 509: p. 159-166.
26.Liu, Y., et al., Effects of stocking density on growth performance and metabolism of juvenile Lenok (Brachymystax lenok). Aquaculture, 2019. 504: p. 107-113.
27.Zahedi, S., et al., Effect of stocking density on growth performance, plasma biochemistry and muscle gene expression in rainbow trout (Oncorhynchus mykiss). Aquaculture, 2019. 498: p. 271-278.
28.Barton, B.A., Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and comparative biology, 2002. 42(3): p. 517-525.
29.Huntingford, F.A., et al., Current issues in fish welfare. Journal of fish biology, 2006. 68(2): p. 332-372.
30.Hoseini, S.M., et al., Effects of dietary tryptophan supplementation and stocking density on growth performance and stress responses in rainbow trout (Oncorhynchus mykiss). Aquaculture, 2020. 519: p. 734908.
31.張浚銘(2005)。不換水白蝦(Litopenaeusvannamei)養殖技術之建立。國立中山大學碩士論文。32.Avnimelech, Y., Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 1999. 176(3-4): p. 227-235.
33.Hopkins, J.S., P.A. Sandier, and C.L. Browdy, Effect of two feed protein levels and feed rate combinations on water quality and production of intnsive shrimp ponds operated without water exchange. Journal of the world Aquaculture Society, 1995. 26(1): p. 93-97.
34.Demirci, A., et al., Has the pandemic (COVID-19) affected the fishery sector in regional scale? A case study on the fishery sector in Hatay province from Turkey. Marine and Life Sciences, 2020. 2(1): p. 13-17.
35.Acar, Y., The novel coronavirus (Covid-19) outbreak and impact on tourism activities. Guncel Turizm Arastirmalari Dergisi, 2020: p. 7-21.
36.Açikgöz, Ö. and A. Günay, The early impact of the Covid-19 pandemic on the global and Turkish economy. Turkish journal of medical sciences, 2020. 50(9): p. 520-526.
37.Bassett, H.R., et al., Preliminary lessons from COVID-19 disruptions of small-scale fishery supply chains. World Development, 2021. 143: p. 105473.
38.Fao, I. and W. UNICEF, Wfp, Who. The state of food security and nutrition in the world, 2020. 2340.
39.Langlois, L., et al., Fishing for the right probiotic: host–microbe interactions at the interface of effective aquaculture strategies. FEMS Microbiology Reviews, 2021. 45(6): p. fuab030.
40.Wang, A., et al., Use of probiotics in aquaculture of China—a review of the past decade. Fish & shellfish immunology, 2019. 86: p. 734-755.
41.Qi, Z., et al., Probiotics in aquaculture of China—current state, problems and prospect. Aquaculture, 2009. 290(1-2): p. 15-21.
42.Bondad-Reantaso, M.G., et al., Disease and health management in Asian aquaculture. Veterinary parasitology, 2005. 132(3-4): p. 249-272.
43.Organization, W.H., Antibiotic resistance; 2020 Available from https://www. who. int/news-room/fact-sheets/detail/antibiotic-resistance. Accessed, 2018. 6: p. 20.
44.Cabello, F.C., et al., Antimicrobial use in aquaculture re‐examined: its relevance to antimicrobial resistance and to animal and human health. Environmental microbiology, 2013. 15(7): p. 1917-1942.
45.Sørum, H., Antibiotic resistance in aquaculture. Acta veterinaria Scandinavica. Supplementum, 1999. 92: p. 29-36.
46.Smith, P., M.P. Hiney, and O.B. Samuelsen, Bacterial resistance to antimicrobial agents used in fish farming: a critical evaluation of method and meaning. Annual review of fish diseases, 1994. 4: p. 273-313.
47.Kim, S.-R., L. Nonaka, and S. Suzuki, Occurrence of tetracycline resistance genes tet (M) and tet (S) in bacteria from marine aquaculture sites. FEMS Microbiology Letters, 2004. 237(1): p. 147-156.
48.Organization, W.H., Report of a joint FAO/OIE/WHO Expert Consultation on antimicrobial use in aquaculture and antimicrobial resistance, Seoul, Republic of Korea, 13–16 June 2006. 2006.
49.Kümmerer, K., Antibiotics in the aquatic environment–a review–part I. Chemosphere, 2009. 75(4): p. 417-434.
50.Verschuere, L., et al., Probiotic bacteria as biological control agents in aquaculture. Microbiology and molecular biology reviews, 2000. 64(4): p. 655-671.
51.Nayak, S.K., Probiotics and immunity: a fish perspective. Fish & shellfish immunology, 2010. 29(1): p. 2-14.
52.Parker, R., Probiotics, the other half of the antibiotic story. Anim Nutr Health, 1974. 29: p. 4-8.
53.Zivković, R., Probiotics or microbes against microbes. Acta medica Croatica: casopis Hravatske akademije medicinskih znanosti, 1999. 53(1): p. 23-28.
54.Hill, C., et al., Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews Gastroenterology & hepatology, 2014.
55.Hotel, A.C.P. and A. Cordoba, Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention, 2001. 5(1): p. 1-10.
56.Naylor, R.L., et al., Effect of aquaculture on world fish supplies. Nature, 2000. 405(6790): p. 1017-1024.
57.El-Saadony, M.T., et al., The functionality of probiotics in aquaculture: An overview. Fish & Shellfish Immunology, 2021. 117: p. 36-52.
58.Loh, J.-Y., The role of probiotics and their mechanisms of action: an aquaculture perspective. World Aquac, 2017. 48: p. 19-23.
59.Boyd, C.E. and L. Massaut, Risks associated with the use of chemicals in pond aquaculture. Aquacultural engineering, 1999. 20(2): p. 113-132.
60.George, D.M., A.S. Vincent, and H.R. Mackey, An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable Resource recovery. Biotechnology reports, 2020. 28: p. e00563.
61.Wang, Y.-B., J.-R. Li, and J. Lin, Probiotics in aquaculture: challenges and outlook. Aquaculture, 2008. 281(1-4): p. 1-4.
62.Blankenship, R.E., J.M. Olson, and M. Miller, Antenna complexes from green photosynthetic bacteria. Anoxygenic photosynthetic bacteria, 1995: p. 399-435.
63.Syed, M., et al., Removal of hydrogen sulfide from gas streams using biological processes• a review. Canadian Biosystems Engineering, 2006. 48: p. 2.
64.Soltani, M., et al., Genus Bacillus, promising probiotics in aquaculture: aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science & Aquaculture, 2019. 27(3): p. 331-379.
65.Hlordzi, V., et al., The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports, 2020. 18: p. 100503.
66.Valeriano, V., M. Balolong, and D.K. Kang, Probiotic roles of Lactobacillus sp. in swine: insights from gut microbiota. Journal of Applied Microbiology, 2017. 122(3): p. 554-567.
67.Parapouli, M., et al., Saccharomyces cerevisiae and its industrial applications. AIMS microbiology, 2020. 6(1): p. 1.
68.FAO, S., Indicators: measuring up to the 2030 agenda for sustainable development. FAO and The SDGs, 2017.
69.Verdegem, M.C., Nutrient discharge from aquaculture operations in function of system design and production environment. Reviews in Aquaculture, 2013. 5(3): p. 158-171.
70.Herrera-García, G., et al., Mapping the global threat of land subsidence. Science, 2021. 371(6524): p. 34-36.
71.Ferral, A., et al., Remote Sensing Applications: Society and Environment. 2003.
72.楊祐寧(2012)。屏東平原農業用地下水開發變遷之探討。國立屏東科技大學碩士論文。73.經濟部水利署(2019),108年度臺北、嘉義、台南及屏東地區地層下陷監測及分析,經濟部水利署,臺北市。
74.邱仕彰(2021)。台灣室外低換水生態養殖技術介紹。檢自https://www.taifer.com.tw/PublicationArticleDetailC004000.aspx?Cond=8ea61566-658c-46af-aa7a-52baae91d95a&CategoryID=4aef3e06-ca0d-496a-971e-8f2df101a1e9(July. 26, 2021)
75.顏在宏(2003)。循環水養殖系統之濾材物性與配置對水處理效率影響研究。國立臺灣大學碩士論文。76.Hargreaves, J.A., Photosynthetic suspended-growth systems in aquaculture. Aquacultural engineering, 2006. 34(3): p. 344-363.
77.Luo, G., et al., Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 2014. 422: p. 1-7.
78.Pérez-Fuentes, J.A., C.I. Pérez-Rostro, and M.P. Hernández-Vergara, Pond-reared Malaysian prawn Macrobrachium rosenbergii with the biofloc system. Aquaculture, 2013. 400: p. 105-110.
79.楊明樺、鄭金華, 零換水養殖模式下的生物膠羽(bioflocs)技術. 水試專訊。38:31-34, 2012.
80.Liao, I.C., H.M. Su, and E.Y. Chang, Techniques in finfish larviculture in Taiwan. Aquaculture, 2001. 200(1-2): p. 1-31.
81.林怡旻(2019)。臺灣白蝦養殖產業經濟分析。國立臺灣海洋大學碩士論文。82.Pruder, G.D., Biosecurity: application in aquaculture. Aquacultural engineering, 2004. 32(1): p. 3-10.
83.胡百鴻(2007)。台灣石斑魚養殖生產效益分析。國立臺灣海洋大學碩士論文。84.Melia, P. and M. Gatto, A stochastic bioeconomic model for the management of clam farming. Ecological Modelling, 2005. 184(1): p. 163-174.
85.Rahman, M.M., et al., Cage culture of sutchi catfish, Pangasius sutchi (Fowler 1937): effects of stocking density on growth, survival, yield and farm profitability. Aquaculture Research, 2006. 37(1): p. 33-39.
86.Schram, E., et al., Stocking density-dependent growth of Dover sole (Solea solea). Aquaculture, 2006. 252(2-4): p. 339-347.
87.蔡閔凱(2011)。台灣水族周邊產業概況及市場分析。國立臺灣海洋大學碩士論文。