[1]Yinhua Jiang et al. , 2007, “Solar photocatalytic decolorization of C.I. basic blue 41 in an aqueous suspension of TiO2-ZnO”, Dyes and Pigments, vol 78, pp 77–83.
[2]呂道元,2015,以溶膠-凝膠法製備介孔二氧化鈰摻雜鋯及其特性研究,國立屏東科技大學,碩士論文。[3]Daneshvar N., et al. , 2004, “Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2”, Journal of Photochemistry and Photobiology A Chem , vol 162, pp 317-322.
[4]Jintao Tian., et al., 2009,“N-doped TiO2 / ZnO composite powder and its photocatalytic performance for degradation of methyl orange”, Surface and Coatings Technology, vol 204, pp 723–730.
[5]Meng Nan Chong., et al., 2010, “Recent developments in photocatalytic water treatment technology: a review”, Water Research, vol. 44, pp 2997–3027.
[6]Okorn Mekasuwandumrong., et al., 2010, “Effects of synthesis conditions and annealing posttreatment on the photocatalytic activities of ZnO nanoparticles in the degradation ofmethylene blue dye”, Chemical Engineering Journal, vol 164, pp 77–84.
[7]M. Pérez-González ., et al., 2015, “Optical structural and morphological properties of photocatalytic TiO2- ZnO thin films synthesized by the sol-gel process”, Thin Solid Films , vol 594, pp 304-309.
[8]M. Pérez-González., et al., 2019, “Sol-gel synthesis of Ag-loaded TiO2-ZnO thin films with enhanced photocatalytic activity”, Journal of Alloys and Compounds, vol 779 , pp 908-917.
[9]M. Pérez-González and S.A. Tomás, 2019, “Surface chemistry of TiO2-ZnO thin films doped with Ag. Its role on the photocatalytic degradation of methylene blue” , Catalysis Today Available online, vol 12.
[10]Rui Peng., et al., 2012, “TiO2–SiO2 mixed oxides: organic ligand templated controlled their photocatalytic activities for hydrogen production”, International Journal of Hydrogen Energy, vol 37, lssue 22, pp 17009–17018.
[11]C. J. Ren,W., et al., 2013, “Physicochemical properties and photocatalytic activity of the TiO2–SiO2 prepared by precipitation method”, Separation and Purification Technology, vol. 107, pp 264–272.
[12]Bao Jun Ma., et al., 2013, “Enhanced hydrogen generation from methanol aqueous solutions over Pt/MoO3/TiO2 under ultraviolet light”, International Journal of Hydrogen Energy, vol. 38, pp 3582–3587.
[13]石豫臺和楊和學,2013,“淺談奈米光觸媒”, ,科學研習,1月No.52-1。
[14]Muruganandham M., et al., 2006, “Solar assisted photocatalytic and photochemical degradation of reactive black 5”, Journal of Hazardous Materials B, vol 137, pp 1371-1376.
[15]Muruganandham M and Swaminathan M., 2004, “Solar photocatalytic degradation of a reactive azo dye in TiO2-suspension”, Sol Energy Mater & Solar Cells, vol 80, pp 439-457.
[16]Dong Suk Kim., et al., 2007, “Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size”, Journal of Colloid and Interface Science, vol 316 , pp 85–91.
[17]C.Jeffrey Brinker and George W, 1990, “The physics and chemistry of sol–gel processing”, Sol-Gel Science , Book, CHAPTER 1 – Introduction.
[18]Ali Karatutlu., et al., 2018, “Liquid-phase synthesis of nanoparticles and nanostructured materials”, Emerging Applications of Nanoparticles and Architecture Nanostructures , Book, Chapter 1.
[19]Thomas Graham , 1863 - 1864, “On the properties of silicic acid and other analogous colloidal substances”, Proceedings of the Royal Society of London, vol 13 , pp 335-341.
[20]B. Jirgensons and M.E., 1962, “The history and scope of colloid chemistry”, A Short Textbook of Colloid Chemistry , Book, Chapter 1.
[21]李佳融,2002,以溶膠凝膠法製作 SiO2 奈米多孔質載體之加工特性的初步探討,國立交通大學,碩士論文。[22]Alain C. Pierre , 1998, “Introduction to sol-gel processing”, The Kluwer International Series in Sol-Gel Processing, Book, pp 1-9, Chapter 1.
[23]C.Jeffrey Brinker and George W, 1990, “The physics and chemistry of sol–gel processing”, Sol-Gel Science ,Book , CHAPTER 2 –Hydrolysis and Condensation I.
[24]C.Jeffrey Brinker and George W, 1990, “The physics and chemistry of sol–gel processing”, Sol-Gel Science, Book, Chapter 5 – Gelation.
[25]Alain C. Pierre, 1998 , “Introduction to sol-gel processing” , The Kluwer International Series in Sol-Gel Processing, Book, pp205-250, Chapter 5 –gels.
[26]Amsterdam, 1985, “Non-crystalline solids”, Journal of Non-Crystalline Solids, vol 70, pp 301-322.
[27]C.Jeffrey Brinker and George W, 1990, “The physics and chemistry of sol–gel processing”, Sol-Gel Science , Book, CHAPTER 6 – Aging of gels.
[28]C.Jeffrey Brinker and George W, 1990, “The physics and chemistry of sol–gel processing”, Sol-Gel Science , Book, CHAPTER 8 –Drying.
[29]Alain C. Pierre, 1998, “Introduction to sol-gel processing”, The Kluwer International Series in Sol-Gel Processing, Book, pp 279-308, Chapter 7 –Phase transformations.
[30]Sumio Sakka, 2013, “Sol-gel process and applications”, Handbook of Advanced Ceramics, pp 883-910.
[31]C.Jeffrey Brinker and George W, 1990, “The physics and chemistry of sol–gel processing”, Sol-Gel Science , Book, Chapter 11 –Sintering.
[32]Clark W, Broadhead P, 1970, “Optical absorption and photochromism in irondoped rutile”, Journal of Physics C: Solid State Physics, vol 3, pp 1047–1050.
[33]Layman P., 1996, “Outlook brightens for titanium dioxide following recent business pickup”, Chem Eng News , vol 74, pp 13–14.
[34]Tang H., et al., 1995, “TiO2 anatase thin films as gas sensors”, Sens Actuators B Chem, vol 26-27, pp 71–75.
[35]Nicoleta Iftimie ., et al., 2009, “Gas sensing materials based on TiO2 thin films”, Journal of Vacuum Science & Technology B, vol 27, pp 538.
[36]Rong Wang., et al., 1997, “Light-induced amphiphilic surfaces”, Nature, vol 388.
[37]Tetsu Tatsuma., et al., 2001, “TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability”, Chem Mater, vol 13, pp 2838-2842.
[38]R.J.M. Vullers., et al., 1999, “Titanium nanostructures made by local oxidation with the atomic force microscope”, Applied Surface Science, vol 144–145, pp 584-588.
[39]JonN C. , et al., 1969, “Pressure temperature studies of anatase, brookite rutile, and TiO2(II) : a discussion”, The American mineralogist, vol 54.
[40]Banerjee A, 2011, “The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures”, Nanotechnol Science and Applications, vol 4, pp 35–65.
[41]Noriko Hosaka,. et al., 1997, “Optical properties of single-crystal anatase TiO2”, Journal of the Physical Society of Japan, vol 66, pp 877-880.
[42]Jinfeng Zhang,. et al., 2014, “New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2”, Physical Chemistry Chemical Physics, vol 16, pp 20382-20386.
[43]Lamia Znaidi, 2009, “Sol–gel-deposited ZnO thin films: a review”, Materials Science and Engineering B, vol 174, pp 18-30.
[44]Paula Judith Perez Espitia,. et al., 2012, “Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications”, Food Bioprocess Technol, vol 5, pp 1447-1464.
[45]Ü. Özgür,. et al., 2005, “A comprehensive review of ZnO materials and devices”, Journal of Applied Physics, vol 98.
[46]Takafumi Yao and Soon-Ku Hong, 2009, “Oxide and nitride semiconductors”, Processing, Properties and Applications ,Book.
[47]Jianan Deng,. et al., 2013, “Facile synthesis and enhanced ethanol sensing properties of the brush-like ZnO–TiO2 heterojunctions nanofibers”, Sensors and Actuators B, vol 184, pp 21-26.
[48]Sumetha Suwanboon,. et al., 2013, “Optical and photocatalytic properties of La-doped ZnO nanoparticles prepared via precipitation and mechanical milling method”, Ceramics International, vol 39, pp 2811-2819.
[49]Yumin Liu,. et al., 2010, “Preparation and characterization of mesoporous ZnO by polystyrene microemulsion”, Desalination and Water Treatment, vol 26, pp 297-300.
[50]葉羽陽,2015,以溶膠-凝膠法合成Ni/ZnO和其性質研究,國立屏東科技大學,碩士論文。[51]林世雄,2018,以溶膠-凝膠法製備錳、鎳共摻雜之氧化鋅及其特性研究,國立屏東科技大學,碩士論文。[52]Hongbo Fu,. et al., 2008, “Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60”, Environmental Science & Technology, vol 42, pp 8064-8069.
[53]Yajun Wang ,. et al., 2010, “Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4+”, Energy & Environmental Science, vol 4, pp 2922.
[54]U.G. Akpan and B.H. Hameed, 2010, “The advancements in sol–gel method of doped-TiO2 photocatalysts”, Applied Catalysis A: General, vol 375, pp 1-11.
[55]S.A. Tomás,. et al., 2008, “Optical and morphological characterization of photocatalytic TiO2 thin films doped with silver”, Thin Solid Films, vol 518, pp 1337–1340.
[56]Lianjun Liu,. et al., 2013, “Silver-incorporated bicrystalline (anatase/brookite) TiO2 microspheres for CO2 photoreduction with water in the presence of methanol”, Applied Catalysis A: General, vol 467, pp 474-482.
[57]Jinyu Zheng,. et al., 2008, “Enhanced photocatalytic activity of TiO2 nano-structured thin film with a silver hierarchical configuration”, Applied Surface Science, vol 254, pp 1630-1635.
[58]Deepti Chaudhary,. et al., 2017, “A ternary Ag/TiO2/CNT photoanode for efficient photoelectrochemical water splitting under visible light irradiation”, International Journal of Hydrogen Energy, vol 42, pp 7826-7835.
[59]Wei Xie,. et al., 2010, “Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability”, Journal of Photochemistry and Photobiology A: Chemistry, vol 216, pp 149-155.
[60]William Vallejo,. et al., 2019, “Methylene blue photodegradation under visible irradiation on Ag doped ZnO thin films”, International Journal of Photoenergy, vol 2020.
[61]S.H. Jeong,. et al., 2005, “Structural and optical properties of silver-doped Zinc Oxide sputtered films”, Surface & Coatings Technology, vol 193, pp 340-344.
[62]F. Bensouici,. et al., 2015, “Synthesis, characterization and photocatalytic behavior of Ag doped TiO2 thin film”, Superlattices and Microstructures, vol 85, pp 255-265.
[63]鍾心怡等,2010,“Ag/ZnO 異質結構之製備與光催化特性分析”,工程科技與教育學刊,第七卷 第二期, 第170-176頁。
[64]Adeel Riaz,. et al., 2019, “Photocatalytic and photostability behavior of Ag and/ or Al doped ZnO films in methylene blue and rhodamine B under UV-C irradiation”, Coatings, vol 9, pp 202.
[65]Shahzad Salam,. et al., 2012, “Sol–gel synthesis of intrinsic and aluminum-doped zinc oxide thin films as transparent conducting oxides for thin film solar cells”, Thin Solid Films, vol 529, pp 242-247.
[66]F. Ajala,. et al., 2018, “The influence of Al doping on the photocatalytic activity of nanostructured ZnO: the role of adsorbed water”, Applied Surface Science, vol 445, pp 376-382.
[67]M. Baradaran,. et al., 2019, “The role of Al concentration on improving the photocatalytic performance of nanostructured ZnO/ZnO:Al/ZnO multilayer thin films”, Journal of Alloys and Compounds, vol 788, pp 289-301.
[68]Osama Saber,. et al., 2012, “Improvement of photocatalytic degradation of naphthol green b under solar light using Aluminum doping of Zinc Oxide nanoparticles”, Water Air Soil Pollut, vol 223, pp 4615-4626.
[69]Kuang-Che Hsiao,. et al., 2007, “Synthesis, characterization and photocatalytic property of nanostructured Al-doped ZnO powders prepared by spray pyrolysis”, Materials Science and Engineering A, vol 447, pp 71-76.
[70]許毓麟,2012,添加氧化鋰與氧化鋁的氧化鋅之發光性質與微結構分析,國立中山大學,碩士論文。[71]王奕凱,2006, “奈米金屬氧化物及雙金屬氧化物固態觸媒在重力場下之合成”,行政院國家科學委員會專題研究計畫。
[72]葉佳鑫,2014,利用溶膠凝膠法合成含鉑二氧化鈦奈米管之製備與鑑定及其在光催化分解亞甲基藍的研究,國立彰化師範大學,碩士論文。[73]Michael Grätzel, 2001, “Photoelectrochemical cells”, Nature, vol 414.
[74]謝永旭,2012,以N-TiO2固定態光觸媒利用太陽光礦化雙酚A之研究,國立中興大學,碩士論文。
[75]高偉哲,2015,以光芬頓程序處理抗生素氯四環素廢水之研究,國立中興大學,碩士論文。[76]Hu Chun,. et al., 2000, “Destruction of phenol aqueous solution by photocatalysis or direct photolysis”, Chemosphere, vol 41, pp 1205-1209.
[77]Lorette Pruden Childs and David F., 1980, “Is photocatalysis catalytic ? ”, Journal of catalysis, vol 66, pp 383-390.
[78]K. Kalyanasundaram, 2013, “Photochemical applications of solar energy: photocatalysis and photodecomposition of water”, Photochemistry, vol 41, pp 182-265.
[79]Sumandeep Kaur and Vasundhara Singh, 2007, “TiO2 mediated photocatalytic degradation studies of reactive red 198 by UV irradiation”, Journal of Hazardous Materials, vol 141, pp 230-236.
[80]K. Chiang,. et al., 2003, “Photocatalytic oxidation of cyanide: kinetic and mechanistic studies”, Journal of Molecular Catalysis A: Chemical, vol 193, pp 285-297.
[81]M.A. Rauf,. et al., 2011, “An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals”, Desalination, vol 276, pp 13-27.
[82]Nám. J. ,. et al., 2016, “Electrochemical treatment of water contaminated with methylorange”, Nova Biotechnologica et Chimica, vol 15-1.
[83]Guttmann and Ehrlich, 1891, “Uber die Wirkung des Methylenblau bei Malaria”, Berliner Klinische Wochenschrift, vol 28, pp 953-956.
[84]Mohammad ,. et al., 2020, “Walnut shell powder as a lowcost adsorbent for methylene blue dye: isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations”, Scientific Reports,vol 10, pp 7983.
[85]郭景豪等,2018, “米製品中羅丹明B、酸性紅、夾竹桃紅及偶氮玉紅著色劑鑑別方法之建立”,食品藥物研究年報,vol 9,第96-103頁。
[86]Penny Fisher, 1999, “Review of using rhodamine b as a marker for wildlife studies”, Wildlife Society Bulletin, vol 27, pp 318-329.
[87]Mariana Beija ,. et al., 2009, “Synthesis and applications of rhodamine derivatives as fluorescent probes”, Chemical Society Reviews, vol 38, pp 2410-2433.
[88]Robert B. ,. et al., 1987, “Summary review of the health effects associated with phenol”, Toxicology and Industrial Health, vol 3, No. 4.
[89]Mahsa Azami. ,. et al., 2012, “A central composite design for the optimization of the removal of the azo dye, methyl orange, from waste water using the Fenton reaction”, Journal the Serbian Chemical Society, vol 77, pp 235-246.
[90]Jun Yao and Chaoxia Wang, 2010, “Decolorization of methylene blue with TiO2 sol via UV irradiation photocatalytic degradation”, International Journal of Photoenergy, vol 2010.
[91]Greg T., 2013, “Bioconjugate Techniques- Chapter 10 - Fluorescent Probes”, Academic Press, Book, pp 395-463.
[92]Jose Luis Aleixandre-Tudo and Wessel du Toit, 2018, “The role of UV-visible spectroscopy for phenolic compounds quantification in winemaking”, Frontiers and New Trends in the Science of Fermented Food and Beverages, vol 10, pp 5772.
[93]Krzysztof Biernat.,. et al., 2013, “The possibility of future biofuels production using waste carbon dioxide and solar energy”, Biofuels - Economy, Environment and Sustainability, vol 10.
[94]Francesca Scarpelli.,. et al., 2018, “esoporous TiO2 thin films: State of the art”, Titanium Dioxide - Material for a Sustainable Environment, vol 10.
[95]V.P.Dinesh.,. et al., 2014, “Plasmon-mediated highly enhanced photocatalytic degradation of industrial textile effluent dyes using hybrid ZnO-Ag core-shell nanorods”, The Royal Society of Chemistry, Issue 103.
[96]Nianqiang Wu, .,. et al., 2014, “Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts”, Published on Web, vol 10, pp 1021.
[97]Wei-Kang Wang ,. et al., 2017, “One-step synthesis of nonstoichiometric TiO2 with designed (101) facets for enhanced photocatalytic H2 evolution”, Applied Catalysis B: Environmental, vol 205, pp 165-172.
[98]Jun Wang ,. et al., 2009, “Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation”, Ultrasonics Sonochemistry, vol 16, pp 225-231.
[99]Shengzhe Zhao ,. et al., 2017, “The facile preparation of Ag decorated TiO2/ZnO nanotubes and their potent photocatalytic degradation efficiency”, The Royal Society of Chemistry, vol 7, pp 50064-50071.