[1]Yadav, R., Tirumali, M., Wang, X., Naebe, M., & Kandasubramanian, B. (2019). Polymer composite for antistatic application in aerospace. Defence Technology, DOI:https://doi.org/10.1016/j.dt.2019.04.008.
[2]Zhu, J., Wang, Z., & Ou, F. (2012). Application of Advanced Composite Materials in Aerospace J. New Technology & New Process, 10.
[3]Romanov, I., Chernyshov, E., & Romanov, A. (2019). Assessment of the possibility for substituting cast iron in vehicle brake disc with Aluminum-Based Metal-matrix composite material produced by internal oxidation. Materials Today: Proceedings, 19, 2125-2128.
[4]Xiao, Y., Zhang, Z., Yao, P., Fan, K., Zhou, H., Gong, T., Zhao, L., & Deng, M. (2018). Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. Tribology International, 119, 585-592.
[5]Qu, X. H., Zhang, L., Mao, W. U., & Ren, S. B. (2011). Review of metal matrix composites with high thermal conductivity for thermal management applications. Progress in Natural Science: Materials International, 21(3), 189-197.
[6]Prieto, R., Molina, J. M., Narciso, J., & Louis, E. (2008). Fabrication and properties of graphite flakes/metal composites for thermal management applications. Scripta Materialia, 59(1), 11-14.
[7]Smart, D. R., Kumar, J. P., & Cyrus, R. S. (2019). Development and investigations of Al5083/CNT/Ni/MoS2 metal matrix composite for offshore applications. Materials Today: Proceedings, 19, 682-685.
[8]Elanchezhian, C., Ramnath, B. V., Ramakrishnan, G., Raghavendra, K. S., Muralidharan, M., & Kishore, V. (2018). Review on metal matrix composites for marine applications. Materials Today: Proceedings, 5(1), 1211-1218.
[9]Weng, S., Ning, H., Fu, T., Hu, N., Zhao, Y., Huang, C., & Peng, X. (2018). Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression. Scientific Reports, 8(1), 3089.
[10]Wang, L., Yang, Z., Cui, Y., Wei, B., Xu, S., Sheng, J., Wang, Miao., Zhu, Y., & Fei, W. (2017). Graphene-copper composite with micro-layered grains and ultrahigh strength. Scientific Reports, 7, 41896.
[11]Xiang, S., Wang, X., Gupta, M., Wu, K., Hu, X., & Zheng, M. (2016). Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties. Scientific Reports, 6, 38824.
[12]Shin, S. E., Choi, H. J., Hwang, J. Y., & Bae, D. (2015). Strengthening behavior of carbon/metal nanocomposites. Scientific Reports, 5, 16114.
[13]Mi, B.(2019). Scaling up nanoporous graphene membranes. Science, 364(6445), 1033-1034
[14]Yang, Y., Yang, X., Liang, L., Gao, Y., Cheng, H., Li, X., Zou, M., Ma, R., Yuan, Q., & Duan, X. (2019) Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science, 364(6445), 1057-1062.
[15]Gao, Z., Zhang, Y., Fu, Y., Yuen, M. M., & Liu, J. (2013). Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots. Carbon, 61, 342-348.
[16]Tian, J., Wu, S., Yin, X., & Wu, W. (2019). Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode. Applied Surface Science, 496, 143696.
[17]Jeong, J. H., Lee, G. W., Kim, Y. H., Choi, Y. J., Roh, K. C., & Kim, K. B. (2019). A holey graphene-based hybrid supercapacitor. Chemical Engineering Journal, 378, 122126.
[18]Shang, Y., Wang, Y., Li, S., Hua, C., Zou, M., & Cao, A. (2017). High-strength carbon nanotube fibers by twist-induced self-strengthening. Carbon, 119, 47-55.
[19]Zhou, X., Liu, X., Lei, J., & Yang, Q. (2019). Atomic simulations of the formation of twist grain boundary and mechanical properties of graphene/aluminum nanolaminated composites. Computational Materials Science, 172, 109342.
[20]Wang, P., Yang, J., Sun, G., Zhang, X., Zhang, H., Zheng, Y., & Xu, S. (2018). Twist induced plasticity and failure mechanism of helical carbon nanotube fibers under different strain rates. International Journal of Plasticity, 110, 74-94.
[21]Jian, N., Xue, P., & Diao, D. (2019). Thermally induced atomic and electronic structure evolution in nanostructured carbon film by in situ TEM/EELS analysis. Applied Surface Science, 498, 143831.
[22]Liu, Z., Monclús, M. A., Yang, L. W., Castillo-Rodríguez, M., Molina-Aldareguía, J. M., & LLorca, J. (2018). Tensile deformation and fracture mechanisms of Cu/Nb nanolaminates studied by in situ TEM mechanical tests. Extreme Mechanics Letters, 25, 60-65.
[23]Thorkelsson, K., Bai, P., & Xu, T. (2015). Self-assembly and applications of anisotropic nanomaterials: A review. Nano Today, 10(1), 48-66.
[24]Zakaria, M. R., Akil, H. M., Kudus, M. H. A., & Saleh, S. S. M. (2014). Enhancement of tensile and thermal properties of epoxy nanocomposites through chemical hybridization of carbon nanotubes and alumina. Composites Part A: Applied Science and Manufacturing, 66, 109-116.
[25]Deng, S., Sumant, A. V., & Berry, V. (2018). Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today, 22, 14-35.
[26]Ovid'Ko, I. A., Valiev, R. Z., & Zhu, Y. T. (2018). Review on superior strength and enhanced ductility of metallic nanomaterials. Progress in Materials Science, 94, 462-540.
[27]Kumar, K. S., Van Swygenhoven, H., & Suresh, S. (2003). Mechanical behavior of nanocrystalline metals and alloys. Acta Materialia, 51(19), 5743-5774.
[28]Liu, L., Deng, Q., Su, M., An, M., & Wang, R. (2019). Strain rate and temperature effects on tensile behavior of Ti/Al multilayered nanowire: A molecular dynamics study. Superlattices and Microstructures, 135, 106272.
[29]Coluci, V. R., & Pugno, N. M. (2010). Molecular dynamics simulations of stretching, twisting and fracture of super carbon nanotubes with different chiralities: towards smart porous and flexible scaffolds. Journal of Computational and Theoretical Nanoscience, 7(7), 1294-1298.
[30]Ma, B., Rao, Q., & He, Y. (2016). Molecular dynamics simulation of temperature effect on tensile mechanical properties of single crystal tungsten nanowire. Computational Materials Science, 117, 40-44.
[31]Sofiah, A. G. N., Samykano, M., Kadirgama, K., Mohan, R. V., & Lah, N. A. C. (2018). Metallic nanowires: Mechanical properties–Theory and experiment. Applied Materials Today, 11, 320-337.
[32]Liu, H., & Zhou, J. (2016). Plasticity in nanotwinned polycrystalline Ni nanowires under uniaxial compression. Materials Letters, 163, 179-182.
[33]Fang, Q., Li, J., Luo, H., Du, J., & Liu, B. (2017). Atomic scale investigation of nanocrack evolution in single-crystal and bicrystal metals under compression and shear deformation. Journal of Alloys and Compounds, 710, 281-291.
[34]Guerra, V., Wan, C., & McNally, T. (2018). Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Progress in Materials Science, 100, 170-186.
[35]Tertuliano, O. A., & Greer, J. R. (2016). The nanocomposite nature of bone drives its strength and damage resistance. Nature Materials, 15(11), 1195.
[36]Touny, A. H., Saleh, M. M., Abd El-Lateef, H. M., & Saleh, M. M. (2019). Electrochemical methods for fabrication of polymers/calcium phosphates nanocomposites as hard tissue implants. Applied Physics Reviews, 6(2), 021303.
[37]Pan, C., Zhang, J., Kou, K., Zhang, Y., & Wu, G. (2018). Investigation of the through-plane thermal conductivity of polymer composites with in-plane oriented hexagonal boron nitride. International Journal of Heat and Mass Transfer, 120, 1-8.
[38]Smith, A. T., LaChance, A. M., Zeng, S., Liu, B., & Sun, L. (2019). Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 1(1), 31-47.
[39]Singh, N. P., Gupta, V. K., & Singh, A. P. (2019). Graphene and carbon nanotube reinforced epoxy nanocomposites: A review. Polymer, 180, 121724.
[40]Zhu, J. Q., Liu, X., & Yang, Q. S. (2019). Dislocation-blocking mechanism for the strengthening and toughening of laminated graphene/Al composites. Computational Materials Science, 160, 72-81.
[41]Hu, Z., Tong, G., Lin, D., Chen, C., Guo, H., Xu, J., & Zhou, L. (2016). Graphene-reinforced metal matrix nanocomposites–a review. Materials Science and Technology, 32(9), 930-953.
[42]Liu, J., Khan, U., Coleman, J., Fernandez, B., Rodriguez, P., Naher, S., & Brabazon, D. (2016). Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics. Materials & Design, 94, 87-94.
[43]Shin, S. E., Choi, H. J., Shin, J. H., & Bae, D. (2015). Strengthening behavior of few-layered graphene/aluminum composites. Carbon, 82, 143-151.
[44]Duan, K., Li, L., Hu, Y., & Wang, X. (2017). Interface mechanical properties of graphene reinforced copper nanocomposites. Materials Research Express, 4(11), 115020.
[45]Kim, Y., Lee, J., Yeom, M. S., Shin, J. W., Kim, H., Cui, Y., & Han, S. M. (2013). Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nature Communications, 4, 2114.
[46]Cao, G., & Gao, H. (2019). Mechanical properties characterization of two-dimensional materials via nanoindentation experiments. Progress in Materials Science, 103, 558-595.
[47]Sha, Z. D., Wan, Q., Pei, Q. X., Quek, S. S., Liu, Z. S., Zhang, Y. W., & Shenoy, V. B. (2014). On the failure load and mechanism of polycrystalline graphene by nanoindentation. Scientific Reports, 4, 7437.
[48]Chen, S., Liu, L., & Wang, T. (2005). Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating–substrate combinations. Surface and Coatings Technology, 191(1), 25-32.
[49]Song, H., Liu, J., Liu, B., Wu, J., Cheng, H. M., & Kang, F. (2018). Two-dimensional materials for thermal management applications. Joule, 2(3), 442-463.
[50]Yankowitz, M., Chen, S., Polshyn, H., Zhang, Y., Watanabe, K., Taniguchi, T., Graf, D., Young, A. F., & Dean, C. R. (2019). Tuning superconductivity in twisted bilayer graphene. Science, 363(6431), 1059-1064.
[51]Papageorgiou, D. G., Kinloch, I. A., & Young, R. J. (2015). Graphene/elastomer nanocomposites. Carbon, 95, 460-484.
[52]Mogera, U., & Kulkarni, G. U. (2019). A new twist in graphene research: Twisted graphene. Carbon, 156, 470-487.
[53]Tian, C., Zhang, S., Wang, H., Chen, C., Han, Z., Chen, M., Zhu, Y., Cui, R., & Zhang, G. (2019). Three-dimensional nanoporous copper and reduced graphene oxide composites as enhanced sensing platform for electrochemical detection of carbendazim. Journal of Electroanalytical Chemistry, 847, 113243.
[54]Chen, J., Wang, L., Huang, Y., Li, Z., Zhang, H., Ali, M. C., Liu, J., Chen, X., & Qiu, H. (2019). Fabrication of nanoporous graphene/cuprous oxide nanocomposite and its application for chemiluminescence sensing of NADH in human serum and cells. Sensors and Actuators B: Chemical, 290, 15-22.
[55]Cay-Durgun, P., & Lind, M. L. (2018). Nanoporous materials in polymeric membranes for desalination. Current Opinion in Chemical Engineering, 20, 19-27.
[56]Machrafi, H., & Lebon, G. (2015). Size and porosity effects on thermal conductivity of nanoporous material with an extension to nanoporous particles embedded in a host matrix. Physics Letters A, 379(12-13), 968-973.
[57]Irving, J. H., & Kirkwood, J. G. (1950). The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. The Journal of chemical physics, 18(6), 817-829.
[58]Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3), 1695.
[59]Smith, R. (Ed.). (2005). Atomic and ion collisions in solids and at surfaces: theory, simulation and applications. Cambridge University Press.
[60]Xue, G. L. (1997). Minimum inter-particle distance at global minimizers of Lennard-Jones clusters. Journal of Global Optimization, 11(1), 83-90.
[61]Cotterill, R. M. J., & Doyama, M. (1968). Energies and atomic configurations of line defects and plane defects in fcc metals. Argonne National Lab., Ill..
[62]Daw, M. S., & Baskes, M. I. (1984). Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 29(12), 6443.
[63]Stuart, S. J., Tutein, A. B., & Harrison, J. A. (2000). A reactive potential for hydrocarbons with intermolecular interactions. The Journal of Chemical Physics, 112(14), 6472-6486.
[64]Brenner, D. W. (1990). Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review B, 42(15), 9458.
[65]李哲緯, “石墨烯量子點與碳複合結構之熱傳導與力學特性分析,” 國立高雄應用科技大學碩士論文, 2017[66]宋柏賢 “鎳鈦形狀記憶合金之微奈米力學特性分析,” 國立高雄應用科技大學碩士論文, 2012[67]Rapaport, D. C., & Rapaport, D. C. R. (2004). The art of molecular dynamics simulation. Cambridge University Press.
[68]Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81(1), 511-519.
[69]Haile, J. M., Johnston, I., Mallinckrodt, A. J., & McKay, S. (1993). Molecular dynamics simulation: elementary methods. Computers in Physics, 7(6), 625.
[70]Gear, C. W. (1971). Numerical initial value problems in ordinary differential equations. Prentice Hall.
[71]Fincham, D., & Heyes, D. M. (1982). Integration algorithms in molecular dynamics. CCP5 Quarterly, 6, 4-10.
[72]Haile, J. M. (1992). Molecular dynamics simulation: elementary methods. John Wiley & Sons, Inc.
[73]Rapaport, D. C., & Rapaport, D. C. R. (2004). The art of molecular dynamics simulation. Cambridge university press.
[74]Kelchner, C. L., Plimpton, S. J., & Hamilton, J. C. (1998). Dislocation nucleation and defect structure during surface indentation. Physical Review B, 58(17), 11085.
[75]Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1), 1-19.
[76]Peng, W., & Sun, K. (2020). Effects of Cu/graphene interface on the mechanical properties of multilayer Cu/graphene composites. Mechanics of Materials, 141, 103270.
[77]Bashirvand, S., & Montazeri, A. (2016). New aspects on the metal reinforcement by carbon nanofillers: a molecular dynamics study. Materials & Design, 91, 306-313.
[78]Zhang, S., Xu, Y., Liu, X., & Luo, S. N. (2018). Competing roles of interfaces and matrix grain size in the deformation and failure of polycrystalline Cu–graphene nanolayered composites under shear loading. Physical Chemistry Chemical Physics, 20(36), 23694-23701.
[79]Weng, S., Fu, T., Peng, X., & Chen, X. (2019). Anisotropic phase transformation in B2 crystalline CuZr alloy. Nanoscale Research Letters, 14(1), 1-12.
[80]Yu, K. Y., Bufford, D., Khatkhatay, F., Wang, H., Kirk, M. A., & Zhang, X. (2013). In situ studies of irradiation-induced twin boundary migration in nanotwinned Ag. Scripta Materialia, 69(5), 385-388.
[81]Wirth, B. D., Bulatov, V., & de la Rubia, T. D. (2000). Atomistic simulation of stacking fault tetrahedra formation in Cu. Journal of Nuclear Materials, 283, 773-777.
[82]Thompson, N. (1953). Dislocation nodes in face-centred cubic lattices. Proceedings of the Physical Society. Section B, 66(6), 481.
[83]Liang, H. Y., Woo, C. H., Huang, H., Ngan, A. H. W., & Yu, T. X. (2003). Dislocation nucleation in the initial stage during nanoindentation. Philosophical Magazine, 83(31-34), 3609-3622.
[84]Zhang, C. L., & Shen, H. S. (2007). Self-healing in defective carbon nanotubes: a molecular dynamics study. Journal of Physics: Condensed Matter, 19(38), 386212.
[85]VijayaSekhar, K., Acharyya, S. G., Debroy, S., Miriyala, V. P. K., & Acharyya, A. (2016). Self-healing phenomena of graphene: potential and applications. Open Physics, 14(1), 364-370.
[86]Nardelli, M. B., Yakobson, B. I., & Bernholc, J. (1998). Mechanism of strain release in carbon nanotubes. Physical Review B, 57(8), R4277.
[87]Nardelli, M. B., Yakobson, B. I., & Bernholc, J. (1998). Brittle and ductile behavior in carbon nanotubes. Physical Review Letters, 81(21), 4656.
[88]Li, J., Liu, B., Luo, H., Fang, Q., Liu, Y., & Liu, Y. (2016). A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates. Computational Materials Science, 118, 66-76.
[89]Doan, D. Q., Fang, T. H., & Chen, T. H. (2020). Nanotribological characteristics and strain hardening of amorphous Cu64Zr36/crystalline Cu nanolaminates. Tribology International, 147, 106275.