資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
English
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
功能切換導覽列
訪客IP:216.73.216.1
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
:::
詳目顯示
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
電子全文
紙本論文
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
鍾承熹
研究生(外文):
CHUNG, CHENG-HSI
論文名稱:
氮化鋁鉻硼硬質薄膜之機械性質與磨潤性能
論文名稱(外文):
Mechanical Properties and Tribological Performance of AlCrBN Hard Coatings
指導教授:
張銀祐
指導教授(外文):
CHANG, YIN-YU
口試委員:
李志偉
、
邱薆蕙
口試委員(外文):
LEE, JYH-WEI
、
CHIOU, AI-HUEI
口試日期:
2021-07-19
學位類別:
碩士
校院名稱:
國立虎尾科技大學
系所名稱:
機械與電腦輔助工程系碩士班
學門:
工程學門
學類:
機械工程學類
論文種類:
學術論文
論文出版年:
2021
畢業學年度:
109
語文別:
中文
論文頁數:
138
中文關鍵詞:
硬質薄膜
、
磨潤性質
、
機械性質
、
熱穩定性
、
氮化鋁鉻硼
外文關鍵詞:
hard coating
、
tribological
、
Mechanical properties
、
Thermal stability
、
AlCrBN
相關次數:
被引用:
2
點閱:373
評分:
下載:24
書目收藏:0
過渡金屬氮化物硬質薄膜,如CrN、AlCrN及AlTiN等薄膜,由於其具有高強度、硬度、耐磨耗及熱穩定性等優異之機械性質。本研究中使用陰極電弧蒸鍍技術(CAE)使用鋁鉻(AlCr)、三元鋁鉻硼(AlCrB)、三元鋁鉻矽(AlCrSi)合金靶材鍍製氮化鋁鉻(AlCrN)、氮化鋁鉻硼(AlCrBN)及氮化鋁鉻矽(AlCrSiN)薄膜,利用CrN當作介層可有效提升薄膜與基材的附著強度。接著將AlCrN、AlCrBN及AlCrSiN薄膜進行不同溫度之高溫氧化(溫度分別為700℃、800℃及900℃)後觀察其抗氧化性及熱穩定性。
藉由場發射掃描電子顯微鏡(FE-SEM)及高解析穿透式掃描電子顯微鏡(HR-TEM)觀察其薄膜微結構,利用電場發射槍電子微探儀(EPMA)測量元素成分分析,利用X光繞射分析儀(XRD)觀察薄膜之晶體結構、結晶相分析及殘留應力,利用二次離子質譜儀(SIMS)判別氧化層厚度,再利用化學分析電子能譜儀(ESCA)判別氧化物。機械性質分析先利用洛氏壓痕試驗機以及刮痕試驗機評估薄膜與基材之間的附著性能,接著透過微克氏壓痕試驗機及奈米壓痕試驗機測量薄膜硬度值及彈性係數,並透過球對盤磨耗試驗機(ball-on-disk)觀察薄膜耐磨性能。
根據實驗結果顯示AlCrBN薄膜及AlCrSiN薄膜皆為fcc B1-NaCl而藉由SEM觀察薄膜結構更可發現AlCrBN及AlCrSiN薄膜為奈米晶結構與非晶結構組成之奈米複合薄膜,B及Si元素具有效抑制晶粒成長導致晶粒細化形成緻密結構,因有效阻礙差排移動,從而獲得高硬度(30~31GPa)及優異耐磨性。透過X光繞射峰計算晶粒尺寸可發現AlCrN薄膜因加入B及Si元素會使晶粒細化形成緻密結構,因此O不會沿著晶界滲透和發生氧化反應,故在高溫氧化退火下之AlCrBN薄膜具有較低之磨耗率(5.17x10-8 mm3/Nm),而AlCrBN及AlCrSiN薄膜經高溫氧化後能維持一定硬度(27~29GPa),故在高溫氧化退火下之AlCrBN薄膜仍然維持優良機械性質,具有優異熱穩定性,也有較好的附著性。
The transition metal nitride hard coatings, such as CrN, AlCrN and AlTiN, have excellent mechanical properties such as high strength, hardness, wear resistance and thermal stability. In this study, aluminum chromium nitride (AlCrN), aluminum chromium boron nitride (AlCrBN) and aluminum chromium silicon nitride (AlCrSiN) coatings were prepared by cathodic arc evaporation (CAE) using aluminum chromium (AlCr), aluminum chromium boron (AlCrB) and aluminum chromium silicon (AlCrSi) alloy targets. The adhesion strength of the coatings to the substrate can be effectively improved by using CrN as the interlayer.The oxidation resistance and thermal stability of AlCrN, AlCrBN and AlCrSiN coatings were observed after high temperature oxidation (temperature 700℃,800℃ and 900℃).
The microstructure of the coatings was observed by field emission scanning electron microscopy (FE-SEM) and high resolution through transmission electron microscope (HR TEM). The element composition analysis was measured by EPMA, the crystal structure, crystal phase analysis and residual stress were observed by X-ray diffraction analyzer (XRD), and the oxide layer thickness was determined by SIMS. The oxide was identified by the Electron spectroscope for chemical analysis, (ESCA). The mechanical properties analysis first used Rockwell indentation tester and scratch tester to evaluate the adhesion between the coating and the substrate. Then, the hardness and elastic coefficient of the coating were measured by the vickers and the nanoindentation tester, and the wear resistance of the coating was observed by ball on disk wear tester.
The results show that the AlCrBN coating and AlCrSiN coating are FCC B1 NaCl. It is found that AlCrBN and AlCrSiN coatings are nano composite coatings composed of nanocrystalline and amorphous structure by SEM. B and Si elements have effective inhibition on the growth of grains, which leads to the fine grain refinement and dense structure, which effectively hinders the differential displacement. Thus, the high hardness (30-31Gpa) and excellent wear resistance are obtained. It is found that the grain size of AlCrN coatings can be calculated by X-ray diffraction peak. Because of the addition of B and Si elements, the grains will be refined to form dense structure, so O does not penetrate and react with the grain boundaries. Therefore, the AlCrBN coatings under high temperature oxidation annealing have a lower wear rate (5.17 x10-8 mm3 /Nm), and the AlCrBN and AlCrSiN coatings can maintain a certain hardness (27-29GPa) after high temperature oxidation. Therefore, the AlCrBN coatings still maintain excellent mechanical properties, excellent thermal stability and good adhesion.
摘要.............................................................i
Abstract........................................................ii
誌謝.............................................................iv
目錄..............................................................v
表目錄...........................................................viii
圖目錄...........................................................ix
第一章 緒論...........................................................1
1.1前言...........................................................1
1.2 研究動機與目的...................................................2
第二章 文獻回顧..................3
2.1 陰極電弧蒸鍍系統(cathodic arc evaporation, CAE)..........3
2.1.2陰極電弧蒸鍍優缺點..............4
2.2薄膜成長機制..........8
2.3薄膜結構..........10
2.4薄膜強化理論............12
2.4.1 晶粒細化強化(strengthening by grain size reduction ).......12
2.4.2 固溶強化(solid-solution strengthening)..........13
2.4.3 奈米晶與非晶複合結構強化.........14
2.4.4 奈米多層薄膜韌性強化............17
2.5硬質薄膜介紹....................20
2.5.1 氮化鉻(CrN)薄膜..............20
2.5.2 氮化鋁鉻(AlCrN)薄膜..........22
2.5.3 氮化鋁鉻硼(AlCrBN)薄膜........27
2.5.4 氮化鋁鉻矽(AlCrSiN)薄膜.........30
第三章 實驗方法..................35
3.1 實驗流程.....................35
3.2 薄膜設計與實驗方法..........36
3.2.1 前處理及鍍膜步驟.........36
3.2.2 單層AlCrN薄膜製程設計.....38
3.2.3 單層AlCrBN薄膜製程設計....39
3.2.4 單層AlCrSiN薄膜製程設計...40
3.3 真空退火系統(Vacuum Annealing System).........41
3.4 薄膜機械性質分析........43
3.4.1 洛氏硬度試驗機(Rockwell Hardness).......43
3.4.2 刮痕試驗機(Scratch Test)......45
3.4.3 維氏硬度試驗機(Vickers Hardness).....47
3.4.4 奈米壓痕試驗機(Nano-indentation).....48
3.4.5 磨耗試驗機(Tribometer)........49
3.5薄膜微結構與成分分析.........50
3.5.1高解析度場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FESEM).............50
3.5.2 場發射穿透式電子顯微鏡(Field Emission Transmission Electron Microscope, FETEM).............53
3.5.3 場發射電子微探儀(Field Emission Electron Probe Microanalyzer, EPMA) ............55
3.5.4 二次離子質譜儀(Secondary Ion Mass Spectrometer, SIMS).....56
3.5.5 化學分析電子能譜儀(Electron Spectroscope for Chemical Analysis, ESCA) ......57
3.5.6 X光繞射分析儀(X-Ray Diffractometer, XRD).....58
3.5.7 三維表面輪廓儀(3D Surface Profilometer).......61
第四章 結果與討論........62
4.1 薄膜常溫微結構分析.....62
4.1.1 SEM微結構........62
4.1.2 EPMA元素成分比例定量分析......64
4.1.3 X光繞射分析.......65
4.1.4 AlCrBN薄膜之TEM微結構分析.......69
4.2 薄膜常溫機械性質分析.......73
4.2.1 洛氏壓痕分析.......73
4.2.2 刮痕試驗分析.......74
4.2.3 微克氏硬度分析.......76
4.2.4 奈米壓痕分析.......77
4.2.5 薄膜殘留應力分析.......79
4.2.6 磨耗試驗分析.......82
4.3 高溫氧化退火後之薄膜微結構分析.......87
4.3.1 SEM微結構.......87
4.3.2 EPMA元素成分比例分析.......88
4.3.3 X光繞射分析.......89
4.3.4 薄膜縱深成分分析(SIMS).......93
4.3.5 XPS化學鍵結態與成分分析.......99
4.3.6 AlCrBN薄膜高溫氧化退火之TEM薄膜微結構分析.......104
4.3.7 表面粗糙度分析.......107
4.4 高溫氧化退火後之薄膜機械性質分析.......108
4.4.1 洛氏壓痕分析.......108
4.4.2 刮痕試驗分析.......110
4.4.3 微克氏硬度分析.......112
4.4.4 奈米壓痕分析.......114
4.4.5 磨耗試驗分析.......117
第五章 結論.......123
5.1 薄膜微結構分析及表面性質.......123
5.2 薄膜機械性質分析.......124
第六章未來展望.......125
參考文獻.......126
Extended Abstract.......133
1.張銀祐, 陰極電弧活化沉積含金屬類鑽碳膜之製程與特性研究. 國立中興大學材料工程學研究所碩士論文. 2004.
2.蔡定平, 真空技術與應用. 2001, 新竹市: 國家實驗研究院儀器科技研究中心出版.
3.Anders, A., Chapter 10 - Unfiltered and Filtered Cathodic Arc Deposition, in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P.M. Martin, Editor. 2010, William Andrew Publishing: Boston. p. 466-531.
4.張銀祐, 表面工程. 國立虎尾科技大學教學手冊. 2013.
5.趙浩勇、何主亮、陳克昌, 如何減少陰極電弧電漿陳機薄膜上的微粒. 表面技術雜誌. Vol. 153. 1995.
6.Lang, W.C., et al., Study on cathode spot motion and macroparticles reduction in axisymmetric magnetic field-enhanced vacuum arc deposition. Vacuum, 2010. 84(9): p. 1111-1117.
7.張詠傑, 陰極電弧系統之新型電磁控弧源設計與沉積.氮化鋁鈦硬質薄膜機械性質研究. 國立虎尾科技大學研究所碩士論文. 2018.
8.Chapter_ThinFilmGrowthProcesses. 2008.
9.Thornton, J.A., Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology, 1974. 11(4): p. 666-670.
10.Mukherjee, S. and D. Gall, Structure zone model for extreme shadowing conditions. Thin Solid Films, 2013. 527: p. 158-163.
11.Anders, A., A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films, 2010. 518(15): p. 4087-4090.
12.Callister, W.D.J.,
. John Wiley & Sons, Inc, 2007.
13.Greer, J.R. and J.T.M. De Hosson, Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Progress in Materials Science, 2011. 56(6): p. 654-724.
14.Wang, Y.X. and S. Zhang, Toward hard yet tough ceramic coatings. Surface and Coatings Technology, 2014. 258: p. 1-16.
15.S. Vepfek *, M.H., S. Reiprich, Li Shizhi', J. Dian,
. Surface and Coatings Technology, 1996. 86-87: p. 394-401.
16.Vepřek, S., New development in superhard coatings: the superhardnanocrystalline-amorphous composites. Thin Solid Films, 1998. 317: p. 449-454.
17.Chen, H., et al., Microstructure and thermal conductivity of Ti-Al-Si-N nanocomposite coatings deposited by modulated pulsed power magnetron sputtering. Thin Solid Films, 2020. 693: p. 137680.
18.Zhang, S., et al., Toughening of hard nanostructural thin films: a critical review. Surface and Coatings Technology, 2005. 198(1): p. 2-8.
19.Musil, J., Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surface and Coatings Technology, 2012. 207: p. 50-65.
20.蔡孟蒓, 三元合金靶沉積氮化鋁鈦硼及氮化鋁鈦矽硬質薄膜之機械性質與磨潤性能, in 機械與電腦輔助工程系碩士班. 2018, 國立虎尾科技大學: 雲林縣. p. 179.
21.Chang, Y.-Y. and M.-C. Cai, Mechanical property and tribological performance of AlTiSiN and AlTiBN hard coatings using ternary alloy targets. Surface and Coatings Technology, 2019. 374: p. 1120-1127.
22.Miletić, A., et al., Microstructure and mechanical properties of nanostructured Ti–Al–Si–N coatings deposited by magnetron sputtering. Surface and Coatings Technology, 2014. 241: p. 105-111.
23.Cho, J.Y., et al., The effect of Mg0.1Zn0.9O layer thickness on optical band gap of ZnO/Mg0.1Zn0.9O nano-scale multilayer thin films prepared by pulsed laser deposition method. Thin Solid Films, 2011. 519(13): p. 4282-4285.
24.趙良展, 奈米多層氮化鋁鈦/氮化鉻鈦矽硬質薄膜之機械性質與切削加工性能, in 機械與電腦輔助工程系碩士班. 2019, 國立虎尾科技大學: 雲林縣. p. 123.
25.Chang, Y.-Y. and L.-C. Chao, Effect of substrate bias voltage on the mechanical properties of AlTiN/CrTiSiN multilayer hard coatings. Vacuum, 2021. 190: p. 110241.
26.陳俊孝, 多層氮化鋁鉻/氮化鈦釩硬質薄膜之機械性質與高溫氧化研究, in 機械與電腦輔助工程系碩士班. 2016, 國立虎尾科技大學: 雲林縣. p. 120.
27.Zeman, P., et al., Structure and properties of hard and superhard Zr–Cu–N nanocomposite coatings. Materials Science and Engineering: A, 2000. 289(1): p. 189-197.
28.Ali, R., M. Sebastiani, and E. Bemporad, Influence of Ti–TiN multilayer PVD-coatings design on residual stresses and adhesion. Materials & Design, 2015. 75: p. 47-56.
29.永源科技股份有限公司, 產品型錄. 薄膜應用. 2021.
30.Maria Nordin , M.L., Sture Hogmark, Mechanical and tribological properties of multilayered PVD TiNr/CrN. Wear, 1999. 232: p. 221-225.
31.Lin, J., W.D. Sproul, and J.J. Moore, Microstructure and properties of nanostructured thick CrN coatings. Materials Letters, 2012. 89: p. 55-58.
32.Lorenzo-Martin, C., et al., Effect of microstructure and thickness on the friction and wear behavior of CrN coatings. Wear, 2013. 302(1-2): p. 963-971.
33.Arias, D.F., et al., A mechanical and tribological study of Cr/CrN multilayer coatings. Materials Chemistry and Physics, 2015. 160: p. 131-140.
34.Cheng, Y.H., T. Browne, and B. Heckerman, Mechanical and tribological properties of CrN coatings deposited by large area filtered cathodic arc. Wear, 2011. 271(5): p. 775-782.
35.Kawate, M., A. Kimura Hashimoto, and T. Suzuki, Oxidation resistance of Cr1−XAlXN and Ti1−XAlXN films. Surface and Coatings Technology, 2003. 165(2): p. 163-167.
36.Du, J.W., et al., Mechanical properties, thermal stability and oxidation resistance of TiN/CrN multilayer coatings. Vacuum, 2020. 179: p. 109468.
37.Sugishima, A., H. Kajioka, and Y. Makino, Phase transition of pseudobinary Cr–Al–N films deposited by magnetron sputtering method. Surface and Coatings Technology, 1997. 97(1): p. 590-594.
38.Kimura, A., et al., Anisotropic lattice expansion and shrinkage of hexagonal TiAlN and CrAlN films. Surface and Coatings Technology, 2003. 169-170: p. 367-370.
39.Mo, J.L., et al., Impact wear and abrasion resistance of CrN, AlCrN and AlTiN PVD coatings. Surface and Coatings Technology, 2013. 215: p. 170-177.
40.Leyland, A. and A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear, 2000. 246(1): p. 1-11.
41.Mo, J.L. and M.H. Zhu, Tribological oxidation behaviour of PVD hard coatings. Tribology International, 2009. 42(11): p. 1758-1764.
42.Xiao, B., et al., A study of oxidation behavior of AlTiN-and AlCrN-based multilayer coatings. Surface and Coatings Technology, 2018. 333: p. 229-237.
43.Souza, P.S., et al., Analysis of the surface energy interactions in the tribological behavior of ALCrN and TIAlN coatings. Tribology International, 2020. 146: p. 106206.
44.Singh, A., S. Ghosh, and S. Aravindan, Investigation of oxidation behaviour of AlCrN and AlTiN coatings deposited by arc enhanced HIPIMS technique. Applied Surface Science, 2020. 508: p. 144812.
45.Endrino, J.L., et al., Oxidation tuning in AlCrN coatings. Surface and Coatings Technology, 2007. 201(8): p. 4505-4511.
46.Chim, Y.C., et al., Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films, 2009. 517(17): p. 4845-4849.
47.Tytko, D., P.-P. Choi, and D. Raabe, Oxidation behavior of AlN/CrN multilayered hard coatings. Nano Convergence, 2017. 4(1): p. 15.
48.Chen, W., et al., Comparison of microstructures, mechanical and tribological properties of arc-deposited AlCrN, AlCrBN and CrBN coatings on Ti-6Al-4V alloy. Surface and Coatings Technology, 2020. 404: p. 126429.
49.Wendler, B., et al., Hard and superhard nanolaminate and nanocomposite coatings for machine elements based on Ti6Al4V alloy. Materials and Manufacturing Engineering, 2010. 43(1): p. 455-462.
50.Sato, T., et al., Effects of boron contents on microstructures and microhardness in CrxAlyN films synthesized by cathodic arc method. Surface and Coatings Technology, 2006. 201(3): p. 1348-1351.
51.Tritremmel, C., et al., Mechanical and tribological properties of AlTiN/AlCrBN multilayer films synthesized by cathodic arc evaporation. Surface and Coatings Technology, 2014. 246: p. 57-63.
52.Tritremmel, C., et al., Microstructure and mechanical properties of nanocrystalline Al–Cr–B–N thin films. Surface and Coatings Technology, 2012. 213: p. 1-7.
53.Gorishnyy, T.Z., et al., Physical and mechanical properties of reactively sputtered chromium boron nitride thin films. Thin Solid Films, 2003. 445(1): p. 96-104.
54.Yazıcı, M., et al., Effect of sol aging time on the wear properties of TiO2–SiO2 composite films prepared by a sol–gel method. Tribology International, 2016. 104: p. 175-182.
55.Zhou, S., et al., Comparative study of simplex doped nc-WC/a-C and duplex doped nc-WC/a-C(Al) nanocomposite coatings. Applied Surface Science, 2011. 257(15): p. 6971-6979.
56.Nose, M., et al. Microstructure and Mechanical Properties of Cr-Al-BN Coatings Prepared by Reactive DC and RF Co-Sputtering. in Materials Science Forum. 2010. Trans Tech Publ.
57.Chang, C.-L., C.-S. Huang, and J.-Y. Jao, Microstructural, mechanical and wear properties of Cr–Al–B–N coatings deposited by DC reactive magnetron co-sputtering. Surface and Coatings Technology, 2011. 205(8): p. 2730-2737.
58.Park, I.-W., et al., Microstructures, mechanical properties, and tribological behaviors of Cr–Al–N, Cr–Si–N, and Cr–Al–Si–N coatings by a hybrid coating system. Surface and Coatings Technology, 2007. 201(9): p. 5223-5227.
59.Chang, Y.-Y., et al., High temperature oxidation resistance of CrAlSiN coatings synthesized by a cathodic arc deposition process. Journal of Alloys and Compounds, 2008. 461(1): p. 336-341.
60.Chen, H.-W., et al., Oxidation behavior of Si-doped nanocomposite CrAlSiN coatings. Surface and Coatings Technology, 2010. 205(5): p. 1189-1194.
61.Ding, X.-z., X.T. Zeng, and Y.C. Liu, Structure and properties of CrAlSiN Nanocomposite coatings deposited by lateral rotating cathod arc. Thin Solid Films, 2011. 519(6): p. 1894-1900.
62.Polcar, T. and A. Cavaleiro, High-temperature tribological properties of CrAlN, CrAlSiN and AlCrSiN coatings. Surface and Coatings Technology, 2011. 206(6): p. 1244-1251.
63.Tritremmel, C., et al., Influence of Al and Si content on structure and mechanical properties of arc evaporated Al–Cr–Si–N thin films. Thin Solid Films, 2013. 534: p. 403-409.
64.Chang, C.-C., et al., Influence of Si contents on tribological characteristics of CrAlSiN nanocomposite coatings. Thin Solid Films, 2015. 584: p. 46-51.
65.杜正恭 and 詹佑晨, 奈米硬質薄膜之發展、製備及檢測技術. 科儀新知, 2011(185): p. 23-32.
66.Polcar, T. and A. Cavaleiro, High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings – Structure and oxidation. Materials Chemistry and Physics, 2011. 129(1): p. 195-201.
67.ISO26443, I.S., Fine ceramics (advanced ceramics, advanced technical ceramics) — Rockwell indentation test for evaluation of adhesion of ceramic coatings. 2008.
68.Lenz, B., et al., Application of CNN networks for an automatic determination of critical loads in scratch tests on a-C:H:W coatings. Surface and Coatings Technology, 2020. 393: p. 125764.
69.ISO20502, D.E., Advanced Technical Ceramics - Methods of Test for Ceramic Coatings - Part 3: Determination of Adhesion and Other Mechanical Failure Modes by a Scratch Test. 2016.
70.Larsson, P.L., On the Invariance of Hardness at Vickers Indentation of Pre-Stressed Materials. Metals, 2017. 7: p. 260.
71.Quinn, G.D., Fracture Toughness of Ceramics by the Vickers Indentation Crack Length Method: A Critical Review. Ceramic Engineering and Science Proceedings, 2006.
72.Ranjana Saha, W.D.N., Effects of the substrate on the determination of thin filmmechanical properties by nanoindentation. Acta Materialia, 2002. 50(1): p. 23-38.
73.Wu, H., et al., Nano-mechanical characterization of plasma surface tungstenized layer by depth-sensing nano-indentation measurement. Applied Surface Science, 2015. 324: p. 160-167.
74.Bartosik, M., et al., Thermally-induced formation of hexagonal AlN in AlCrN hard coatings on sapphire: Orientation relationships and residual stresses. Surface and Coatings Technology, 2010. 205(5): p. 1320-1323.
75.K. Bobzin , G.J., Gebrauchsdauerhypothese PVD-beschichteter Bauteile im Trockenlauf Deutschen Bundesministerium für Wirtschaft und Technologie 2012.
76.Kwiecińska, B., S. Pusz, and B.J. Valentine, Application of electron microscopy TEM and SEM for analysis of coals, organic-rich shales and carbonaceous matter. International Journal of Coal Geology, 2019. 211: p. 103203.
77.Bruslind, L., Microbiology.
78.羅聖全, 研發奈米科技的基本工具之一電子顯微鏡介紹-TEM. 小奈米大世界.
79.Duh, J.-G., K.-J. Wang, and S.-Y. Tasi, Electron Probe Microanalyzer. 2009.
80.Hofmann, J.P., M. Rohnke, and B.M. Weckhuysen, Recent advances in secondary ion mass spectrometry of solid acid catalysts: large zeolite crystals under bombardment. Phys Chem Chem Phys, 2014. 16(12): p. 5465-74.
81.Koskinen, J., Cathodic-Arc and Thermal-Evaporation Deposition. 2014. p. 3-55.
82.Chen, L., et al., Improved thermal stability and oxidation resistance of Al–Ti–N coating by Si addition. Thin Solid Films, 2014. 556: p. 369-375.
83.Park, J.-K., et al., Structure, hardness and thermal stability of TiAlBN coatings grown by alternating deposition of TiAlN and BN. Vacuum, 2009. 84(4): p. 483-487.
84.Mayrhofer, P.H., et al., Microstructural design of hard coatings. Progress in Materials Science, 2006. 51(8): p. 1032-1114.
85.Zhang, R.F. and S. Veprek, Phase stabilities and spinodal decomposition in the Cr1−xAlxN system studied by ab initio LDA and thermodynamic modeling: Comparison with the Ti1−xAlxN and TiN/Si3N4 systems. Acta Materialia, 2007. 55(14): p. 4615-4624.
86.Haršáni, M., et al., Adhesive-deformation relationships and mechanical properties of nc-AlCrN/a-SiNx hard coatings deposited at different bias voltages. Thin Solid Films, 2018. 650: p. 11-19.
87.蔡賢治, 經高溫氧化之添加鋁元素鉻薄膜磨潤性能研究, in 機械工程學系碩博士班. 2008, 國立成功大學: 台南市. p. 80.
88.Musil, J. and M. Jirout, Toughness of hard nanostructured ceramic thin films. Surface and Coatings Technology, 2007. 201(9-11): p. 5148-5152.
89.Xi, Y., et al., Film thickness effect on texture and residual stress sign transition in sputtered TiN thin films. Ceramics International, 2017. 43(15): p. 11992-11997.
90.Ma, C.H., J.H. Huang, and H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction. Thin Solid Films, 2002. 418(2): p. 73-78.
91.Zhang, L., et al., Microstructure, residual stress, and fracture of sputtered TiN films. Surface and Coatings Technology, 2013. 224: p. 120-125.
92.Daniel, R., et al., The origin of stresses in magnetron-sputtered thin films with zone T structures. Acta Materialia, 2010. 58(7): p. 2621-2633.
93.Chaudhari, P., Grain Growth and Stress Relief in Thin Films. Journal of Vacuum Science and Technology, 1972. 9(1): p. 520-522.
94.Lu, Y.H., et al., Effects of B content and wear parameters on dry sliding wear behaviors of nanocomposite Ti–B–N thin films. Wear, 2007. 262(11): p. 1372-1379.
95.Challen, J.M. and P.L.B. Oxley, An explanation of the different regimes of friction and wear using asperity deformation models. Wear, 1979. 53(2): p. 229-243.
96.Suh, N.P. and H.C. Sin, The genesis of friction. Wear, 1981. 69(1): p. 91-114.
97.Karvánková, P., et al., Thermal stability of nc-TiN/a-BN/a-TiB2 nanocomposite coatings deposited by plasma chemical vapor deposition. Thin Solid Films, 2004. 467(1): p. 133-139.
98.He, Y., et al., Oxidation behaviour of PACVD TiBN coating at elevated temperatures. Surface and Coatings Technology, 2009. 204(5): p. 601-609.
99.Olefjord, I., H.J. Mathieu, and P. Marcus, Intercomparison of surface analysis of thin aluminium oxide films. Surface and Interface Analysis, 1990. 15(11): p. 681-692.
100.Chen, T., et al., Correlation between microstructure evolution and high temperature properties of TiAlSiN hard coatings with different Si and Al content. Applied Surface Science, 2014. 314: p. 735-745.
101.Chen, M., et al., Structural evolution and electrochemical behaviors of multilayer Al-Cr-Si-N coatings. Surface and Coatings Technology, 2016. 296: p. 33-39.
102.Willmann, H., et al., Thermal stability of Al–Cr–N hard coatings. Scripta Materialia, 2006. 54(11): p. 1847-1851.
103.Pang, X., et al., Annealing effects on microstructure and mechanical properties of sputtered multilayer Cr(1−x)AlxN films. Thin Solid Films, 2011. 519(18): p. 5831-5837.
104.Dalbauer, V., et al., On the oxidation behaviour of cathodic arc evaporated AlCr and AlCrO coatings. Vacuum, 2019. 163: p. 1-9.
105.Zhang, M., B. Xu, and G. Ling, Preparation and characterization of α-Al2O3 film by low temperature thermal oxidation of Al8Cr5 coating. Applied Surface Science, 2015. 331: p. 1-7.
106.Dalbauer, V., et al., On the phase formation of cathodic arc evaporated Al1−xCrx-based intermetallic coatings and substoichiometric oxides. Surface and Coatings Technology, 2018. 352: p. 392-398.
107.Zhang, G., et al., Structure and mechanical properties of Cr–B–N films deposited by reactive magnetron sputtering. Journal of Alloys and Compounds, 2009. 486(1): p. 227-232.
108.Kumar, S.S., et al., Investigations on the effect of substrate temperature on the properties of reactively sputtered zirconium carbide thin films. Journal of Alloys and Compounds, 2017. 695: p. 1020-1028.
109.Yuan, S., et al., In-situ fabrication of gradient titanium oxide ceramic coating on laser surface textured Ti6Al4V alloy with improved mechanical property and wear performance. Vacuum, 2020. 176: p. 109327.
110.Pfeiler, M., et al., Improved oxidation resistance of TiAlN coatings by doping with Si or B. Surface and Coatings Technology, 2009. 203(20): p. 3104-3110.
111.Cai, F., et al., Gradient architecture of Si containing layer and improved cutting performance of AlCrSiN coated tools. Wear, 2019. 424-425: p. 193-202.
112.Chen, W., et al., Investigation on microstructures and mechanical properties of AlCrN coatings deposited on the surface of plasma nitrocarburized cool-work tool steels. Vacuum, 2015. 121: p. 194-201.
113.Chen, W., et al., Comparison of AlCrN and AlCrTiSiN coatings deposited on the surface of plasma nitrocarburized high carbon steels. Applied Surface Science, 2015. 332: p. 525-532.
電子全文
國圖紙本論文
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
top
相關論文
相關期刊
熱門點閱論文
1.
經高溫氧化之添加鋁元素鉻薄膜磨潤性能研究
2.
奈米多層氮化鋁鈦/氮化鉻鈦矽硬質薄膜之機械性質與切削加工性能
3.
陰極電弧系統之新型電磁控弧源設計與沉積氮化鋁鈦硬質薄膜機械性質研究
4.
三元合金靶沉積氮化鋁鈦硼及氮化鋁鈦矽硬質薄膜之機械性質與磨潤性能
5.
多層氮化鋁鉻/氮化鈦釩硬質薄膜之機械性質與高溫氧化研究
6.
碳化速率對碳/碳複合材料機械及磨潤性質影響之研究
7.
聚乙烯/氫氧化鎂/蒙脫土奈米複合材料之阻燃特性、機械性質與熱穩定性研究
8.
石墨化順序對碳/碳複合材料機械及磨潤性質之影響
9.
陰極電弧沉積Cr-N-C-O薄膜之微結構與機械性質之研究
10.
以電漿輔助化學氣相沈積法在超硬碳化鎢基材上鍍著類鑽碳膜與機械性質研究
11.
優化介層設計氮化鋁鈦鉻硬質薄膜之抗衝擊疲勞與機械性能分析
12.
介層設計多層氮化鋁鈦硼硬質鍍膜之高溫氧化及機械性質分析
13.
鍍層CrTiSiN複合薄膜模具之溫間機械性質及磨潤特性且應用於鎂合金溫間接觸分析
14.
IZO薄膜之光電、機械及穩定性質研究
15.
人類牙釉質之微觀機械及磨潤性質及氟化物與雷射處理之影響
無相關期刊
1.
多元氮化鋁鈦鋯與氮化鋁鈦鉻鋯之機械性質與切削性能研究
2.
陰極電弧蒸鍍氮化鋁鈦鋯及氮化鋁鈦矽鋯多層薄膜之機械性質與切削性能分析
3.
多元奈米多層氮化鉻鉬/氮化鈦釩薄膜之機械性能與熱穩定性研究
4.
奈米多層氮化鋁鈦/氮化鉻鈦矽硬質薄膜之機械性質與切削加工性能
5.
陰極電弧沉積鋁鈦矽鉻釩鋯高熵合金氮化物薄膜之機械性質研究
6.
陰極電弧蒸鍍鋁鈦鉻鈮矽硼多元合金氮化物薄膜之高溫性質與不銹鋼切削分析
7.
應用虛擬實境於機器手臂教導系統
8.
快速退火氧化對鈦鈮鋯鉭合金氮化物薄膜之微結構與機械性質影響
9.
探討公司企業形象及經營策略對市場開拓之影響-以聯泉淨水器材有限公司為例
10.
應用GIS於日月潭國家風景區觀光服務設施之空間分析
11.
高速鋼離子氮化對於陰極電弧沉積AlCrSiN薄膜之機械性質與衝擊疲勞性能影響
12.
五軸工具機性能分析與智慧化加工預測研究
13.
基於質量彈簧模型變形理論發展製鞋流程中虛擬貼底方法之研究
14.
基於幾何造型核心之五軸數控編程與模擬系統開發
15.
積層製造在鞋墊設計與鞋中底結構彈性體之研究
簡易查詢
|
進階查詢
|