|
[1] J. Yu, Y. Fu, L. Zhu, Z. Yang, X. Yang, L. Ding, Y. Zeng, B. Yan, J. Tang, P. Gao, and J. Ye, “Heterojunction solar cells with asymmetrically carrier-selective contact structure of molybdenum-oxide/silicon/magnesium-oxide,” Solar Energy, Vol. 159, 2018, pp. 704-709. [2] L. G. Gerling, S. Mahato, A. M. Vilches, G. Masmitja, P. Ortega, C. Voz, R. Alcubilla, and J. Puigdollers, “Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells,” Solar Energy Materials & Solar Cells, Vol. 145, 2016, pp. 109-115. [3] L. G. Gerling, S. Mahato, C. Voz, R. Alcubilla, and J. Puigdollers, “Characterization of transition metal oxide/silicon heterojunctions for solar cell applications,” Applied Sciences, Vol. 5, 2015, pp. 695-705. [4] P. Ravindra, R. Mukherjee, and S. Avasthi, “Hole-selective electron-blocking copper oxide contact for silicon solar cells,” IEEE Journal of Photovoltaics, Vol.7, 2017, pp. 1278-1283. [5] S. Chatterjee and A. J. Pal, “Introducing Cu2O thin-films as a hole-transport layer in efficient planar perovskite solar cell structures,” The Journal of Physical Chemistry C, Vol.120, 2016, pp. 1428-1437. [6] Z. Zang, “Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films,” Applied Physics Letters, Vol. 112, 2018, pp. 042106-1-042106-5. [7] S. R. Adilov, V. P. Afanaciev, I. N. Kashkul, S. E. Kumekov, N. V. Mukhin, and E. I. Terukov, “Studying the composition and structure of films obtained by thermal oxidation of copper,” Glass Physics and Chemistry, Vol. 43, 2017, pp. 272-275. [8] H. Lan, S. Lin, Y. Qu, and F. Lai, “Optical properties of the oxidation of Cu thin films prepared by thermal evaporation,” Surface Review and Letters, Vol. 20, 2013, pp. 1350011-1-1350011-8. [9] V. A. Gevorkyan, A. E. Reymers, M. N. Nersesyan, and M. A. Arzakantsyan, “Characterization of Cu2O thin films prepared by evaporation of CuO powder,” Journal of Physics: Conference Series, Vol. 350, 2012, pp. 1-6. [10] Y. Liu, J. Zhu, L. Cai, Z. Yao, C. Duan, Z. Zhao, C. Zhao, and W. Mai, “Solution-processed high-quality Cu2O thin films as hole transport layers for pushing the conversion efficiency limit of Cu2O/Si heterojunction solar cells,” Solar RRL, Vol. 4, 2020, pp. 1900339-1-1900339-8. [11] N. Kikuchi and K. Tonooka, “Electrical and structural properties of Ni-doped Cu2O films prepared by pulsed laser deposition,” Thin Solid Films, Vol. 486, 2005, pp. 33-37. [12] N. Kikuchi, K. Tonooka, and E. Kusano, “Mechanisms of carrier generation and transport in Ni-doped Cu2O,” Vacuum, Vol. 80, 2006, pp. 756-760. [13] C. Zhu and M. J. Panzer, “Synthesis of Zn:Cu2O thin films using a single step electrodeposition for photovoltaic applications,” ACS Applied Materials & Interfaces, Vol. 7, 2015, pp. 5624-5628. [14] K. K. Markose, M. Shaji, S. Bhatia, P. R. Nair, K. J. Saji, A. Antony, and M. K. Jayaraj, “Novel boron-doped p‑type Cu2O thin films as a hole-selective contact in c‑Si solar cells,” ACS Applied Materials & Interfaces, Vol. 12, 2020, pp. 12972-12981. [15] X. M. Cai, X. Q. Su, F. Ye, H. Wang, X. Q. Tian, D. P. Zhang, P. Fan, J. T. Luo, Z. H. Zheng, G. X. Liang, and V. A. L. Roy, “The n-type conduction of indium-doped Cu2O thin films fabricated by direct current magnetron co-sputtering,” Applied Physics Letters, Vol. 107, 2015, pp. 083901-1-083901-5. [16] C. C. Tseng, J. H. Hsieh, S. J. Liu, and W. Wu, “Effects of Ag contents and deposition temperatures on the electrical and optical behaviors of Ag-doped Cu2O thin films,” Thin Solid Films, Vol. 518, 2009, pp. 1407-1410. [17] H. Yin, Y. Zhao, J. Li, Q. Yang, and W. Wu, “Optical and electrical properties of Ag:Cu2O nanocomposite films prepared by pulse laser deposition,” Materials Chemistry and Physics, Vol. 241, 2020, pp. 122399-1-122399-5. [18] S. Upadhyay, D. Sharma, N. Singh, V. R. Satsangi, R. Shrivastav, U. V. Waghmare, and S. Dass, “Experimental and first-principles theoretical studies on Ag-doped cuprous oxide as photocathode in photo electrochemical splitting of water,” Journal of Materials Science, Vol. 49, 2013, pp. 868-876. [19] J. Resende, C. Jimenez, N. D. Nguyen, and J. L. Deschanvres, “Magnesium-doped cuprous oxide (Mg:Cu2O) thin films as a transparent p-type semiconductor,” Physica Status Solidi A Applications and Material Science, Vol. 213, 2016, pp. 2296-2302. [20] R. Mukherjee, P. Srivastava, P. Ravindra, and S. Avasthi, “Doped Cu2O/n-Si heterojunction solar cell,” 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC), 2018, pp. 2162-2165. [21] X. Zhang, Y. Wan, J. Bullock, T. Allen, and A. Cuevas, “Low resistance ohmic contact to p-type crystalline silicon via nitrogen-doped copper oxide films,” Applied Physics Letters, Vol.109, 2016, pp. 052102-1-052102-4. [22] M. A. Marquardt, N. A. Ashmore, and D. P. Cann, “Crystal chemistry and electrical properties of the delafossite structure,” Thin Solid Films, Vol. 496, 2006, pp. 146-156. [23] M. Nolan, “Defects in Cu2O, CuAlO2 and SrCu2O2 transparent conducting oxides,” Thin Solid Films, Vol. 516, 2008, pp. 8130-8135. [24] H. Yanagi, S. I. Inoue, K. Ueda, H. Kawazoe, H. Hosono, and N. Hamada, “Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2,” Journal of Applied Physics, Vol. 88, pp. 4159-1-4159-5. [25] F. Igbari, M. Li, Y. Hu, Z. K. Wang, and L. S. Liao, “Room-temperature CuAlO2 hole interfacial layer for efficient and stable planar perovskite solar cells,” Journal of Materials Chemistry A, 2016, pp. 1-11. [26] R. A. Ismail, F. F. Rashid, and M. S. Tariq, “Preparation and characteristics study of CuAlO2/ Si heterojunction photodetector by pulsed laser deposition,” Journal of Materials Science: Materials in Electronics, Vol. 28, 2017, pp. 6889~6896. [27] G. Dong, M. Zhang, X. Zhao,Y. Li, and H. Yan, “Influence of working gas pressure on structure and properties of CuAlO2 films,” Journal of Crystal Growth, Vol. 311, 2009, pp. 1256-1259. [28] G. Dong, M. Zhang, X. Zhao,Y. Li, and H. Yan, “Influences of film thickness on the structural, electrical and optical properties of CuAlO2 thin films,” Super lattices and Microstructures, Vol. 71, 2014, pp. 177-184. [29] B. L. Stevens, C. A. Hoel, C. Swanborg, Y. Tang, C. Zhou, M. Grayson, K. R. Poeppelmeier, and S. A. Barnett, “DC reactive magnetron sputtering, annealing, and characterization of CuAlO2 thin films,” Journal of Vacuum Science & Technology A, Vol. 29, 2011, pp. 011018-1-011018-7. [30] M. Fang, H. He, B. Lu, W. Zhang, B. Zhao, Z. Ye, and J. Huang, “Optical properties of p-type CuAlO2 thin film grown by RF magnetron sputtering,” Applied Surface Science, Vol. 257, 2011, pp. 8330-8333. [31] G. C. Hernandez, S. M. Hernandez, E. C. Tostado, F. D. Flores, E. C. Gonzalez, C. M. Alonso, and J. S. Cruz, “CuAlO2 and CuAl2O4 thin films obtained by stacking Cu and Al films using physical vapor deposition,” Results in Physics, Vol. 9, 2018, pp. 745-752. [32] M. Shasti and A. Mortezaali, “Numerical study of Cu2O, SrCu2O2, and CuAlO2 as hole- transport materials for application in perovskite solar cells,” Physica Status Solidi A Applications and Material Science, Vol. 216, 2019, pp. 1900337-1-1900337-10. [33] P. W. Kuo, J. H. Hsieh, W. T. Wu, and C. H. Wu, “Optoelectronic properties of sputter-deposited Cu2O-Ag-Cu2O treated with rapid thermal annealing,” Vacuum, Vol. 84, 2010, pp. 633-637. [34] D. Oh, Y. S. No, S. Y. Kim, W. J. Cho, K. D. Kwack, and T. W. Kim, “Effect of Ag film thickness on the optical and the electrical properties in CuAlO2/Ag/CuAlO2 multilayer films grown on glass substrates,” Journal of Alloys and Compounds, Vol. 509, 2011, pp. 2176-2179.
|