|
Aparicio, J. D., Saez, J. M., Raimondo, E. E., Benimeli, C. S., & Polti, M. A. (2018).Comparative study of single and mixed cultures of actinobacteria for the bioremediation of co-contaminated matrices. Journal of Environmental Chemical Engineering, 6(2), 2310-2318. Bearup, L. A., Mikkelson, K. M., Wiley, J. F., Navarre-Sitchler, A. K., Maxwell, R. M., Sharp, J. O., & McCray, J. E. (2014). Metal fate and partitioning in soils under bark beetle-killed trees. Sci Total Environ, 496, 348-357. Bednarska, A. J., & Swiatek, Z. (2016). Subcellular partitioning of cadmium and zinc in mealworm beetle (Tenebrio molitor) larvae exposed to metal-contaminated flour. Ecotoxicol Environ Saf, 133, 82-89. Bednarska, A. J., Swiatek, Z. M., & Labecka, A. M. (2019). Effects of Cadmium Bioavailability in Food on Its Distribution in Different Tissues in the Ground Beetle Pterostichus oblongopunctatus. Bull Environ Contam Toxicol, 103(3), 421-427. Benimeli, C. S., Amoroso, M. J., Chaile, A. P., & Castro, G. R. (2003). Isolation of four aquatic streptomycetes strains capable of growth on organochlorine pesticides. Bioresource Technology, 89(2), 133-138. C.S. Benimeli, M. J. A., A.P. Chaile, G.R. Castro. (2003). Isolation of four aquatic streptomycetes strains capable of growth on organochlorine pesticides. Bioresource Technology, 89, 133-138. Carl Ma & John Kingscott, M. E. (1997). Recent Developments for In Situ Treatment of Metal Contaminated Soils. U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Chen, C. J., Hsu, L. I., Wang, C. H., Shih, W. L., Hsu, Y. H., Tseng, M. P., . . . Wu, M. M. (2005). Biomarkers of exposure, effect, and susceptibility of arsenic-induced health hazards in Taiwan. Toxicol Appl Pharmacol, 206(2), 198-206. Chen, Lee. (2010). 兜蟲生物資源化技術開發. Publisher. Conti, E., Dattilo, S., Costa, G., & Puglisi, C. (2017). The ground beetle Parallelomorphus laevigatus is a potential indicator of trace metal contamination on the eastern coast of Sicily. Ecotoxicol Environ Saf, 135, 183-190. David Stonea, P. J., Ryszard Laskowski. (2002). Trends in detoxification enzymes and heavy metal accumulation in ground beetles (Coleoptera: Carabidae) inhabiting a gradient of pollution. Comparative Biochemistry and Physiology Part C, 132, 105-122. Deng, J., Fu, D., Hu, W., Lu, X., Wu, Y., & Bryan, H. (2020). Physiological responses and accumulation ability of Microcystis aeruginosa to zinc and cadmium: Implications for bioremediation of heavy metal pollution. Bioresour Technol, 303, 122963. Douay, F., Pelfrene, A., Planque, J., Fourrier, H., Richard, A., Roussel, H., & Girondelot, B. (2013). Assessment of potential health risk for inhabitants living near a former lead smelter. Part 1: metal concentrations in soils, agricultural crops, and homegrown vegetables. Environ Monit Assess, 185(5), 3665-3680. Ekperusi, O. A., & Aigbodion, I. F. (2015). Bioremediation of heavy metals and petroleum hydrocarbons in diesel contaminated soil with the earthworm: Eudrilus eugeniae. Springerplus, 4, 540. Elena Zvereva, V. S., Viktor Glupov, Ivan Dubovskiy. (2003). Activity and heavy metal resistance of non-specific esterases in leaf beetle Chrysomela lapponica from polluted and unpolluted habitats. Comparative Biochemistry and Physiology, 383–391. Gibb, H., & O'Leary, K. G. (2014). Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: a comprehensive review. Environ Health Perspect, 122(7), 667-672. Girondelot, F. D. A. P. J. P. H. F. A. R. H. R. B. (2012). Assessment of potential health risk for inhabitants living near a former lead smelter. Part 1: metal concentrations in soils, agricultural crops, and homegrown vegetables. Springer Science+Business Media, Environmental Monitoring and Assessment. Giska, I., Babik, W., van Gestel, C. A., van Straalen, N. M., & Laskowski, R. (2015). Genome-wide genetic diversity of rove beetle populations along a metal pollution gradient. Ecotoxicol Environ Saf, 119, 98-105. Gomes, H. I. (2012). Phytoremediation for bioenergy: challenges and opportunities. Environmental Technology Reviews, 1(1), 59-66. Grazyna Wilczek, P. K., Agnieszka Babczyn´ska. (2003). Activity ofcarboxylesterase and glutathione S-transferase in different life-stages of carabid beetle (Poecilus cupreus) exposed to toxic metal concentrations. Comparative Biochemistry and Physiology Part C, 501–512.
Guo, X., Wei, Z., Wu, Q., Li, C., Qian, T., & Zheng, W. (2016). Effect of soil washing with only chelators or combining with ferric chloride on soil heavy metal removal and phytoavailability: Field experiments. Chemosphere, 147, 412-419. doi:10.1016/j.chemosphere.2015.12.087 Gyamfi, O., Sorensen, P. B., Darko, G., Ansah, E., Vorkamp, K., & Bak, J. L. (2021). Contamination, exposure and risk assessment of mercury in the soils of an artisanal gold mining community in Ghana. Chemosphere, 267, 128910. Holmstrup, M., Sorensen, J. G., Overgaard, J., Bayley, M., Bindesbol, A. M., Slotsbo, S., . . . Asmund, G. (2011). Body metal concentrations and glycogen reserves in earthworms (Dendrobaena octaedra) from contaminated and uncontaminated forest soil. Environ Pollut, 159(1), 190-197. Huang, H., Yu, N., Wang, L., Gupta, D. K., He, Z., Wang, K., . . . Yang, X. E. (2011). The phytoremediation potential of bioenergy crop Ricinus communis for DDTs and cadmium co-contaminated soil. Bioresour Technol, 102(23), 11034-11038. Jelaska, L. S., Blanusa, M., Durbesic, P., & Jelaska, S. D. (2007). Heavy metal concentrations in ground beetles, leaf litter, and soil of a forest ecosystem. Ecotoxicol Environ Saf, 66(1), 74-81. Jia, Z., Deng, J., Chen, N., Shi, W., Tang, X., & Xu, H. (2016). Bioremediation of cadmium-dichlorophen co-contaminated soil by spent Lentinus edodes substrate and its effects on microbial activity and biochemical properties of soil. Journal of Soils and Sediments, 17(2), 315-325. Jobby, R., Jha, P., Yadav, A. K., & Desai, N. (2018). Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere, 207, 255-266. Khan, S., Afzal, M., Iqbal, S., & Khan, Q. M. (2013). Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere, 90(4), 1317-1332. Labecka, A. J. B. Z. M. Ś. A. M. (2019). Effects of Cadmium Bioavailability in Food on Its Distribution in Different Tissues in the Ground Beetle Pterostichus oblongopunctatus. Bulletin of Environmental Contamination and Toxicology, 103, 421-427. Li, L., Xu, Z., Wu, J., & Tian, G. (2010). Bioaccumulation of heavy metals in the earthworm Eisenia fetida in relation to bioavailable metal concentrations in pig manure. Bioresour Technol, 101(10), 3430-3436. Lucija Sˇ eric´ Jelaska, Maja Blanusˇa, Paula Durbesˇic´ , Sven D. Jelaska. (2007). Heavy metal concentrations in ground beetles, leaf litter, and soil of a forest ecosystem. Ecotoxicology and Environmental Safety, 66, 74-81. Ma, W., Tai, L., Qiao, Z., Zhong, L., Wang, Z., Fu, K., & Chen, G. (2018). Contamination source apportionment and health risk assessment of heavy metals in soil around municipal solid waste incinerator: A case study in North China. Sci Total Environ, 631-632, 348-357. Martina G. Vijver, H. T. W., Jos P.M. Vink,Cornelis A.M. van Gestel. (2005). Surface adsorption of metals onto the earthworm Lumbricus rubellus and the isopod Porcellio scaber is negligible compared to absorption in the body. Science of the Total Environment, 340, 271-280. McNutt, M. (2013). Mercury and health. Science, 341(6153), 1430. Naccarato, A., Tassone, A., Cavaliere, F., Elliani, R., Pirrone, N., Sprovieri, F., . . . Giglio, A. (2020). Agrochemical treatments as a source of heavy metals and rare earth elements in agricultural soils and bioaccumulation in ground beetles. Sci Total Environ, 749, 141438. Nance, P., Patterson, J., Willis, A., Foronda, N., & Dourson, M. (2012). Human health risks from mercury exposure from broken compact fluorescent lamps (CFLs). Regul Toxicol Pharmacol, 62(3), 542-552. Pérès, G., Vandenbulcke, F., Guernion, M., Hedde, M., Beguiristain, T., Douay, F., . . . Cluzeau, D. (2011). Earthworm indicators as tools for soil monitoring, characterization and risk assessment. An example from the national Bioindicator programme (France). Pedobiologia, 54, S77-S87. Paithankar, J. G., Saini, S., Dwivedi, S., Sharma, A., & Chowdhuri, D. K. (2021). Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere, 262, 128350. Pedersen, S. A., Kristiansen, E., Hansen, B. H., Andersen, R. A., & Zachariassen, K. E. (2006). Cold hardiness in relation to trace metal stress in the freeze-avoiding beetle Tenebrio molitor. J Insect Physiol, 52(8), 846-853. Przybyłowicz, W. J., Mesjasz Przybyłowicz, J., Migula, P., Głowacka, E., Nakonieczny, M., & Augustyniak, M. (2003). Functional analysis of metals distribution in organs of the beetle Chrysolina pardalina exposed to excess of nickel by Micro-PIXE. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 210, 343-348. Qin, G., Niu, Z., Yu, J., Li, Z., Ma, J., & Xiang, P. (2021). Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere, 267, 129205. Rafiq Ahmad, Z. T., Samina Tanvir Malik,Saeed Ahmad Asad,Muhammad Shahzad,Muhammad Bilal,Mohammad Maroof Shah,Sabaz Ali Khan. (2016). Phytoremediation Potential of Hemp (Cannabissativa L.): Identification and Characterization ofHeavy Metals Responsive Genes. Wiley, Vol. 44 • No. 2, 107-218. Ren, C., Teng, Y., Chen, X., Shen, Y., Xiao, H., & Wang, H. (2021). Impacts of earthworm introduction and cadmium on microbial communities composition and function in soil. Environ Toxicol Pharmacol, 83, 103606. Sarma, H., Nava, A. R., & Prasad, M. N. V. (2019). Mechanistic understanding and future prospect of microbe-enhanced phytoremediation of polycyclic aromatic hydrocarbons in soil. Environmental Technology & Innovation, 13, 318-330. Sivakumar, S. (2015). Effects of metals on earthworm life cycles: a review. Environ Monit Assess, 187(8), 530. Sizmur, T., & Richardson, J. (2020). Earthworms accelerate the biogeochemical cycling of potentially toxic elements: Results of a meta-analysis. Soil Biology and Biochemistry, 148. Song, B., Zeng, G., Gong, J., Liang, J., Xu, P., Liu, Z., . . . Ren, X. (2017). Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ Int, 105, 43-55. Suthar, S., Singh, S., & Dhawan, S. (2008). Earthworms as bioindicator of metals (Zn, Fe, Mn, Cu, Pb and Cd) in soils: Is metal bioaccumulation affected by their ecological category? Ecological Engineering, 32(2), 99-107. Talarico, F., Brandmayr, P., Giulianini, P. G., Ietto, F., Naccarato, A., Perrotta, E., . . . Giglio, A. (2014). Effects of metal pollution on survival and physiological responses in Carabus (Chaetocarabus) lefebvrei (Coleoptera, Carabidae). European Journal of Soil Biology, 61, 80-89. Vahter, M. (2008). Health effects of early life exposure to arsenic. Basic Clin Pharmacol Toxicol, 102(2), 204-211. Vahter, M. (2008). Health Effects of Early Life Exposure to Arsenic. Nordic Pharmacological Society Basic & Clinical Pharmacology & Toxicology, 102, 204–211. Vermeulen, F., Van den Brink, N. W., D'Have, H., Mubiana, V. K., Blust, R., Bervoets, L., & De Coen, W. (2009). Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice. Environ Pollut, 157(11), 3098-3105. Vijver, M. G., Wolterbeek, H. T., Vink, J. P., & van Gestel, C. A. (2005). Surface adsorption of metals onto the earthworm Lumbricus rubellus and the isopod Porcellio scaber is negligible compared to absorption in the body. Sci Total Environ, 340(1-3), 271-280. Wang, Y., Li, A., & Cui, C. (2021). Remediation of heavy metal-contaminated soils by electrokinetic technology: Mechanisms and applicability. Chemosphere, 265, 129071. Wilczek, G., Kramarz, P., & Babczyńska, A. (2003). Activity of carboxylesterase and glutathione S-transferase in different life-stages of carabid beetle (Poecilus cupreus) exposed to toxic metal concentrations. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 134(4), 501-512. Xu, J., Bravo, A. G., Lagerkvist, A., Bertilsson, S., Sjoblom, R., & Kumpiene, J. (2015). Sources and remediation techniques for mercury contaminated soil. Environ Int, 74, 42-53. Xu, Y., Luo, G., Zhang, Q., Cui, W., Li, Z., & Zhang, S. (2021). Potential hazards of novel waste-derived sorbents for efficient removal of mercury from coal combustion flue gas. J Hazard Mater, 412, 125226. Zhang, H., Yuan, X., Xiong, T., Wang, H., & Jiang, L. (2020). Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chemical Engineering Journal, 398. Zhang, J., Guo, Y., Fan, S., Wang, S., Shi, Q., Zhang, M., & Zhang, J. (2021). Detoxification of heavy metals attributed to biological and non–biological complexes in soils around copper producing areas throughout China. Journal of Cleaner Production, 292. Zhao, C., Dong, Y., Feng, Y., Li, Y., & Dong, Y. (2019). Thermal desorption for remediation of contaminated soil: A review. Chemosphere, 221, 841-855. Zvereva, E., Serebrov, V., Glupov, V., & Dubovskiy, I. (2003). Activity and heavy metal resistance of non-specific esterases in leaf beetle Chrysomela lapponica from polluted and unpolluted habitats. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 135(4), 383-391. 沈孟緯、顏嘉億. (2013). 以甲蟲處理重油可行性分析. 環境與安全衛生工程系.國立高雄第一科技大學, 高雄. 周伯壎. (2012). 利用犀角金龜處理重金屬之研究. 環境與安全衛生工程系.國立高雄第一科技大學, 高雄. 梁書豪、簡華逸、郭育嘉、楊宗翰、高志明. (2010). 土壤及地下水整治技術發展簡介. 環境工程系.國立中山大學, 高雄 陳弘全. (2014). 以犀角金龜幼蟲來處理難分解之有機汙染物. 環境與安全衛生工程系.國立高雄第一科技大學, 高雄. 陳呈芳. (2004). 土壤重金屬污染整治技術. 中興工程顧問股份有限公司 黃建賓. (2002). 以赤子愛勝蚓去除工業污泥中重金屬之研究. 環境工程與科學系.國立屏東科技大學, 屏東 劉鴻恩. (2009). 重金屬與灰燼對蚯蚓分解有機廢棄物之研究. 環境工程與管理系.朝陽科技大學, 台中. 蔡振賢. (2011). 土壤污染物分析及整治技術之研究-以正豐生化公司霧峰場為例. 環境工程與管理系.朝陽科技大學, 台中.
|