|
[1]Ovik, R., Long, B.D., Barma, M.C., Riaz, M., Sabri, M.F.M., Said, S.M. and Saidur, R., 2016. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renewable and Sustainable Energy Reviews, 64, pp.635-659. [2]Elsheikh, M.H., Shnawah, D.A., Sabri, M.F.M., Said, S.B.M., Hassan, M.H., Bashir, M.B.A. and Mohamad, M., 2014. A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renewable and Sustainable Energy Reviews, 30, pp.337-355. [3]Zeb, K., Ali, S.M., Khan, B., Mehmood, C.A., Tareen, N., Din, W., Farid, U. and Haider, A., 2017. A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan. Renewable and Sustainable Energy Reviews, 75, pp.1142-1155. [4]Riffat, S.B. and Ma, X., 2004. Improving the coefficient of performance of thermoelectric cooling systems: a review. International Journal of Energy Research, 28(9), pp.753-768. [5]Huang, M.J., Chang, T.M., Chong, W.Y., Liu, C.K. and Yu, C.K., 2007. A new lattice thermal conductivity model of a thin-film semiconductor. International Journal of Heat and Mass Transfer, 50(1-2), pp.67-74. [6]Zhang, X. and Zhao, L.D., 2015. Thermoelectric materials: Energy conversion between heat and electricity. Journal of Materiomics, 1(2), pp.92-105. [7]Shi, X. and Chen, L., 2016. Thermoelectric materials step up. Nature Materials, 15(7), pp.691-692. [8]Ge, Z.H., Zhao, L.D., Wu, D., Liu, X., Zhang, B.P., Li, J.F. and He, J., 2016. Low-cost, abundant binary sulfides as promising thermoelectric materials. Materials Today, 19(4), pp.227-239. [9]Zhang, Y., Wang, X., Cleary, M., Schoensee, L., Kempf, N. and Richardson, J., 2016. High-performance nanostructured thermoelectric generators for micro combined heat and power systems. Applied Thermal Engineering, 96, pp.83-87. [10]Wu, H.J., Chen, B.Y. and Cheng, H.Y., 2017. The pn conduction type transition in Ge-incorporated Bi2Te3 thermoelectric materials. Acta Materialia, 122, pp.120-129. [11]Chen, Z.G., Han, G., Yang, L., Cheng, L. and Zou, J., 2012. Nanostructured thermoelectric materials: Current research and future challenge. Progress in Natural Science: Materials International, 22(6), pp.535-549. [12]Zheng, G., Su, X., Xie, H., Shu, Y., Liang, T., She, X., Liu, W., Yan, Y., Zhang, Q., Uher, C. and Kanatzidis, M.G., 2017. High thermoelectric performance of p-BiSbTe compounds prepared by ultra-fast thermally induced reaction. Energy & Environmental Science, 10(12), pp.2638-2652. [13]Shao, C. and Bao, H., 2016. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects. Scientific Reports, 6, p.27492. [14]DiSalvo, F.J., 1999. Thermoelectric cooling and power generation. Science, 285(5428), pp.703-706. [15]Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J.P. and Gogna, P., 2007. New directions for low‐dimensional thermoelectric materials. Advanced Materials, 19(8), pp.1043-1053. [16]Hicks, L.D. and Dresselhaus, M.S., 1993. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B, 47(24), p.16631. [17]Hicks, L.D. and Dresselhaus, M.S., 1993. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 47(19), p.12727. [18]Venkatasubramanian, R., Siivola, E., Colpitts, T. and O'quinn, B., 2001. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413(6856), pp.597-602. [19]Snyder, G.J. and Toberer, E.S., 2008. Structure change, layer sliding, and metallization in high-pressure MoS2. Nature materials, 7, pp.105-114. [20]Vineis, C.J., Shakouri, A., Majumdar, A. and Kanatzidis, M.G., 2010. Nanostructured thermoelectrics: big efficiency gains from small features. Advanced Materials, 22(36), pp.3970-3980. [21]Shakouri, A., 2011. Recent developments in semiconductor thermoelectric physics and materials. Annual Review of Materials Research, 41, pp.399-431. [22]Zhao, D. and Tan, G., 2014. A review of thermoelectric cooling: materials, modeling and applications. Applied Thermal Engineering, 66(1-2), pp.15-24. [23]Wang, Y., Qiu, B., JH McGaughey, A., Ruan, X. and Xu, X., 2013. Mode-wise thermal conductivity of bismuth telluride. Journal of Heat Transfer, 135(9). [24]Yu, C., Zhang, G., Zhang, Y.W. and Peng, L.M., 2015. Strain engineering on the thermal conductivity and heat flux of thermoelectric Bi2Te3 nanofilm. Nano Energy, 17, pp.104-110. [25]Fang, T.H., Chang, W.J., Wang, K.Y. and Huang, C.C., 2018. Strain effect on the heat transport properties of bismuth telluride nanofilms with a hole. Solid State Communications, 274, pp.1-4. [26]Lai, T.Y., Fang, T.H. and Huang, C.C., 2019. Thermal conductivity variation of Bi2Te3 nanofilm with interfacial defects using molecular dynamics. AIP Advances, 9(7), p.075210. [27]Lai, T.Y., Wang, K.Y., Fang, T.H. and Huang, C.C., 2018. Effect of the interface on the mechanical properties and thermal conductivity of bismuth telluride films. Materials Research Express, 5(2), p.026408. [28]Hsieh, I.T. and Huang, M.J., 2019. An Investigation into the Thermal Boundary Resistance Associated with the Twin Boundary in Bismuth Telluride. Nanoscale and Microscale Thermophysical Engineering, 23(1), pp.36-47. [29]Danine, A., Termentzidis, K., Schaefer, S., Li, S., Ensinger, W., Boulanger, C., Lacroix, D. and Stein, N., 2018. Synthesis of bismuth telluride nanotubes and their simulated thermal properties. Superlattices and Microstructures, 122, pp.587-595. [30]Irving, J.H. and Kirkwood, J.G., 1950. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. The Journal of Chemical Physics, 18(6), pp.817-829. [31]Smith, R. ed., 2005. Atomic and ion collisions in solids and at surfaces: theory, simulation and applications. Cambridge University Press, New York. [32]Arsenault, R.J., Beeler, J.R. and Esterling, D.M., 1988. Computer simulation in materials science. Conference: ASM materials seminar on computer simulation in materials science, Lake Buena Vista, Florida, 4-5 Oct 1986. [33]Callister Jr, W.D. and Rethwisch, D.G., 2020. Callister's Materials Science and Engineering. John Wiley & Sons, New York. [34]ERKOÇ, Ş., 2001. Empirical potential energy functions used in the simulations of materials properties. In Annual Reviews Of Computational PhysicsIX, pp. 1-103. [35]Schelling, P.K., Phillpot, S.R. and Keblinski, P., 2002. Comparison of atomic-level simulation methods for computing thermal conductivity. Physical Review B, 65(14), p.144306. [36]Allen, M.P. and Tildesley, D.J., 2017. Computer simulation of liquids. Oxford university press, New York. [37]Lukes, J.R., Li, D.Y., Liang, X.G. and Tien, C.L., 2000. Molecular dynamics study of solid thin-film thermal conductivity. J. Heat Transfer, 122(3), pp.536-543. [38]Chen, Y., Li, D., Lukes, J.R., Ni, Z. and Chen, M., 2005. Minimum superlattice thermal conductivity from molecular dynamics. Physical Review B, 72(17), p.174302. [39]Huang, B.L. and Kaviany, M., 2008. Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride. Physical Review B, 77(12), p.125209. [40]Qiu, B. and Ruan, X., 2009. Molecular dynamics simulations of lattice thermal conductivity of bismuth telluride using two-body interatomic potentials. Physical Review B, 80(16), p.165203. [41]Francombe, M.H., 1958. Structure-cell data and expansion coefficients of bismuth telluride. British Journal of Applied Physics, 9(10), p.415. [42]Wiese, J.R. and Muldawer, L., 1960. Lattice constants of Bi2Te3-Bi2Se3 solid solution alloys. Journal of Physics and Chemistry of Solids, 15(1-2), pp.13-16. [43]Haynes, W.M., 2011. CRC Handbook of Chemistry and Physics. Taylor Francis Group: Boca Raton, Florida. [44]Morse, P.M., 1929. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Physical Review, 34(1), p.57. [45]Qiu, B. and Ruan, X., 2010. Thermal conductivity prediction and analysis of few-quintuple Bi2Te3 thin films: A molecular dynamics study. Applied Physics Letters, 97(18), p.183107. [46]Qiu, B., Sun, L. and Ruan, X., 2011. Lattice thermal conductivity reduction in Bi2Te3 quantum wires with smooth and rough surfaces: A molecular dynamics study. Physical Review B, 83(3), p.035312. [47]Termentzidis, K., Pokropivny, A., Woda, M., Xiong, S.Y., Chumakov, Y., Cortona, P. and Volz, S., 2012. Structure impact on the thermal and electronic properties of bismuth telluride by ab-initio and molecular dynamics calculations. Journal of Physics: Conference Series, 395, p. 012114. [48]Termentzidis, K., Pokropyvnyy, O., Woda, M., Xiong, S., Chumakov, Y., Cortona, P. and Volz, S., 2013. Large thermal conductivity decrease in point defective Bi2Te3 bulk materials and superlattices. Journal of Applied Physics, 113(1), p.013506. [49]Li, S., Chaput, L., Stein, N., Frantz, C., Lacroix, D. and Termentzidis, K., 2015. Thermal conductivity of Bi2Te3 tilted nanowires, a molecular dynamics study. Applied Physics Letters, 106(23), p.233108. [50]Tong, Y., Yi, F., Liu, L., Zhai, P. and Zhang, Q., 2010. Molecular dynamics study on thermo-mechanical properties of bismuth telluride bulk. Computational Materials Science, 48(2), pp.343-348. [51]Huang, B., Yang, X., Liu, L. and Zhai, P., 2015. Effects of van der Waals bonding on the compressive mechanical behavior of bulk Bi2Te3: A molecular dynamics study. Journal of Electronic Materials, 44(6), pp.1668-1673. [52]Bedoya‐Martínez, O.N., Hashibon, A. and Elsässer, C., 2016. Influence of point defects on the phonon thermal conductivity and phonon density of states of Bi2Te3. Physica Status Solidi (a), 213(3), pp.684-693. [53]Cheng, L., Chen, Z.G., Yang, L., Han, G., Xu, H.Y., Snyder, G.J., Lu, G.Q. and Zou, J., 2013. T-shaped Bi2Te3–Te heteronanojunctions: epitaxial growth, structural modeling, and thermoelectric properties. The Journal of Physical Chemistry C, 117(24), pp.12458-12464. [54]Choi, H., Jeong, K., Chae, J., Park, H., Baeck, J., Kim, T.H., Song, J.Y., Park, J., Jeong, K.H. and Cho, M.H., 2018. Enhancement in thermoelectric properties of Te-embedded Bi2Te3 by preferential phonon scattering in heterostructure interface. Nano Energy, 47, pp.374-384. [55]Xie, W., Tang, X., Yan, Y., Zhang, Q. and Tritt, T.M., 2009. High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. Journal of Applied Physics, 105(11), p.113713. [56]Stackhouse, S. and Stixrude, L., 2010. Theoretical methods for calculating the lattice thermal conductivity of minerals. Reviews in Mineralogy and Geochemistry, 71(1), pp.253-269. [57]Hu, L.P., Zhu, T.J., Wang, Y.G., Xie, H.H., Xu, Z.J. and Zhao, X.B., 2014. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Materials, 6(2), pp.e88-e88. [58]Zhang, J., Liu, H.J., Cheng, L., Wei, J., Shi, J., Tang, X.F. and Uher, C., 2014. Enhanced thermoelectric performance of a quintuple layer of Bi2Te3. Journal of Applied Physics, 116(2), p.023706. [59]Jund, P. and Jullien, R., 1999. Molecular-dynamics calculation of the thermal conductivity of vitreous silica. Physical Review B, 59(21), p.13707. [60]Orrill, M. and LeBlanc, S., 2017. Printed thermoelectric materials and devices: Fabrication techniques, advantages, and challenges. Journal of Applied Polymer Science, 134(3). [61]Chen, Y.R., Hwang, W.S., Hsieh, H.L., Huang, J.Y., Huang, T.K. and Hwang, J.D., 2014. Thermal and microstructure simulation of thermoelectric material Bi2Te3 grown by zone-melting technique. Journal of Crystal Growth, 402, pp.273-284. [62]Zheng, Y., Xie, H., Shu, S., Yan, Y., Li, H. and Tang, X., 2014. High-temperature mechanical and thermoelectric properties of p-type Bi0.5Sb1.5Te3 commercial zone melting ingots. Journal of Electronic Materials, 43(6), pp.2017-2022. [63]Smith, R.L. and Sandly, G.E., 1922. An accurate method of determining the hardness of metals, with particular reference to those of a high degree of hardness. Proceedings of the Institution of Mechanical Engineers, 102(1), pp.623-641. [64]Wang, T.H., Fang, T.H. and Lin, Y.C., 2007. A numerical study of factors affecting the characterization of nanoindentation on silicon. Materials Science and Engineering: A, 447(1-2), pp.244-253. [65]Fang, T.H. and Kang, S.H., 2008. Effect of indium dopant on surface and mechanical characteristics of ZnO: In nanostructured films. Journal of Physics D: Applied Physics, 41(24), p.245303. [66]Fang, T.H. and Chang, W.J., 2006. Nanomechanical characterization of amorphous hydrogenated carbon thin films. Applied Surface Science, 252(18), pp.6243-6248. [67]Fang, T.H., Wang, T.H. and Kang, S.H., 2009. Nanomechanical and surface behavior of polydimethylsiloxane-filled nanoporous anodic alumina. Journal of Materials Science, 44(6), pp.1588-1593. [68]Tong, Y., Yi, F., Liu, L., Zhai, P. and Zhang, Q., 2010. Molecular dynamics study of mechanical properties of bismuth telluride nanofilm. Physica B: Condensed Matter, 405(15), pp.3190-3194. [69]Yu, C., Zhang, G., Peng, L.M., Duan, W. and Zhang, Y.W., 2014. Thermal transport along Bi2Te3 topological insulator nanowires. Applied Physics Letters, 105(2), p.023903. [70]Kothari, K. and Maldovan, M., 2017. Phonon surface scattering and thermal energy distribution in superlattices. Scientific Reports, 7(1), pp.1-15. [71]Guo, L., Yan, H., Moore, Q., Buettner, M., Song, J., Li, L., Araujo, P.T. and Wang, H.T., 2015. Elastic properties of van der Waals epitaxy grown bismuth telluride 2D nanosheets. Nanoscale, 7(28), pp.11915-11921. [72]Dun, C., Hewitt, C.A., Jiang, Q., Guo, Y., Xu, J., Li, Y., Li, Q., Wang, H. and Carroll, D.L., 2018. Bi2Te3 plates with single nanopore: the formation of surface defects and self-repair growth. Chemistry of Materials, 30(6), pp.1965-1970. [73]Lai, T.Y., Fang, T.H. and Chen, T.H., 2020. Mechanical and thermal conductivity properties of BiSbTe nanofilms using molecular dynamics. Physica E: Low-dimensional Systems and Nanostructures, p.114300. [74]Jenkins, J.O., Rayne, J.A. and Ure Jr, R.W., 1972. Elastic modulus and phonon properties of Bi2Te3. Physical Review B, 5(8), p.3171. [75]Lamuta, C., Campi, D., Cupolillo, A., Aliev, Z.S., Babanly, M.B., Chulkov, E.V., Politano, A. and Pagnotta, L., 2016. Mechanical properties of Bi2Te3 topological insulator investigated by density functional theory and nanoindentation. Scripta Materialia, 121, pp.50-55. [76]Li, G., Gadelrab, K.R., Souier, T., Potapov, P.L., Chen, G. and Chiesa, M., 2012. Mechanical properties of BixSb2-xTe3 nanostructured thermoelectric material. Nanotechnology, 23(6), p.065703. [77]Li, Z., Peng, L., Li, J., Zhou, J. and Sun, Z., 2019. Mechanical and transport properties of BixSb2-xTe3 single quintuple layers. Computational Materials Science, 170, p.109182. [78]Wang, Z.L., Akao, T., Onda, T. and Chen, Z.C., 2017. Microstructure and thermoelectric properties of Bi-Sb-Te bulk materials fabricated from rapidly solidified powders. Scripta Materialia, 136, pp.111-114. [79]Madavali, B., Kim, H.S., Lee, K.H., Isoda, Y., Gascoin, F. and Hong, S.J., 2016. Large scale production of high efficient and robust p-type Bi-Sb-Te based thermoelectric materials by powder metallurgy. Materials & Design, 112, pp.485-494. [80]Tritt, T.M. ed., 2005. Thermal conductivity: theory, properties, and applications. Springer Science & Business Media, New York. [81]Shi, L.P. and Xiong, S.J., 2009. Phonon thermal conductance of disordered graphene strips with armchair edges. Physics Letters A, 373(5), pp.563-569. [82]Zhao, Y., Dyck, J.S., Hernandez, B.M. and Burda, C., 2010. Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. Journal of the American Chemical Society, 132(14), pp.4982-4983. [83]Guo, F., Liu, Z., Zhu, M. and Zheng, Y., 2019. Electron–phonon scattering limited hole mobility at room temperature in a MoS2 monolayer: first-principles calculations. Physical Chemistry Chemical Physics, 21(41), pp.22879-22887. [84]Murmu, P.P., Kennedy, J., Suman, S., Chong, S.V., Leveneur, J., Storey, J., Rubanov, S. and Ramanath, G., 2019. Multifold improvement of thermoelectric power factor by tuning bismuth and antimony in nanostructured n-type bismuth antimony telluride thin films. Materials & Design, 163, p.107549. [85]Kim, H.S., Heinz, N.A., Gibbs, Z.M., Tang, Y., Kang, S.D. and Snyder, G.J., 2017. High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control. Materials Today, 20(8), pp.452-459. [86]Lai, T.Y., Hsiao, Y.J. and Fang, T.H., 2018. In situ deformation and mechanical properties of bismuth telluride prepared via zone melting. Materials Research Express, 5(3), p.035010. [87]Chang, H.C. and Chen, C.H., 2011. Self-assembled bismuth telluride films with well-aligned zero-to three-dimensional nanoblocks for thermoelectric applications. CrystEngComm, 13(19), pp.5956-5962. [88]Lorenz, D., Zeckzer, A., Hilpert, U., Grau, P., Johansen, H. and Leipner, H.S., 2003. Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Physical Review B, 67(17), p.172101. [89]Jian, S.R., Tasi, C.H., Huang, S.Y. and Luo, C.W., 2015. Nanoindentation pop-in effects of Bi2Te3 thermoelectric thin films. Journal of Alloys and Compounds, 622, pp.601-605. [90]Nowak, R., Sekino, T., Maruno, S. and Niihara, K., 1996. Deformation of sapphire induced by a spherical indentation on the (1010) plane. Applied physics letters, 68(8), pp.1063-1065. [91]Tsai, C.H., Jian, S.R. and Juang, J.Y., 2008. Berkovich nanoindentation and deformation mechanisms in GaN thin films. Applied Surface Science, 254(7), pp.1997-2002. [92]Jian, S.R., Chen, G.J. and Juang, J.Y., 2010. Nanoindentation-induced phase transformation in (1 1 0)-oriented Si single-crystals. Current Opinion in Solid State and Materials Science, 14(3-4), pp.69-74. [93]Jian, S.R. and Lee, Y.H., 2014. Nanoindentation-induced interfacial fracture of ZnO thin films deposited on Si (1 1 1) substrates by atomic layer deposition. Journal of Alloys and Compounds, 587, pp.313-317. [94]Jian, S.R., Tseng, Y.C., Teng, I.J. and Juang, J.Y., 2013. Dislocation energetics and Pop-ins in AlN thin films by Berkovich nanoindentation. Materials, 6(9), pp.4259-4267. [95]Fang, T.H., Hsiao, Y.J. and Kang, S.H., 2015. Mechanical characteristics of copper indium gallium diselenide compound nanopillars using in situ transmission electron microscopy compression. Scripta Materialia, 108, pp.130-135. [96]Lai, T.Y., Hsiao, Y.J. and Fang, T.H., 2017. Mechanical properties of CIGS film with different metallic composition by co-evaporation method. Materials Research Express, 4(11), p.115006. [97]Srivastava, P. and Singh, K., 2013. Morphological evolution in single-crystalline Bi2Te3 nanoparticles, nanosheets and nanotubes with different synthesis temperatures. Bulletin of Materials Science, 36(5), pp.765-770. [98]Haslach Jr, H.W. and Armstrong, R.W., 2004. Deformable bodies and their material behavior. John Wiley & Sons Incorporated, New Jersey. [99]Lin, K.P., Fang, T.H., Stachiv, I. and Cheng, T.C., 2016. Mechanical response and deformation of Ni3Al7 alloys using in-situ transmission electron microscopy compression and nanoindentation. Science of Advanced Materials, 8(8), pp.1571-1578. [100]Singkaselit, K., Sakulkalavek, A. and Sakdanuphab, R., 2017. Effects of annealing temperature on the structural, mechanical and electrical properties of flexible bismuth telluride thin films prepared by high-pressure RF magnetron sputtering. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(3), p.035002. [101]Lamuta, C., Cupolillo, A., Politano, A., Aliev, Z.S., Babanly, M.B., Chulkov, E.V., Alfano, M. and Pagnotta, L., 2016. Nanoindentation of single‐crystal Bi2Te3 topological insulators grown with the Bridgman–Stockbarger method. Physica Status Solidi (b), 253(6), pp.1082-1086. [102]Zhao, L.D., Zhang, B.P., Li, J.F., Zhou, M., Liu, W.S. and Liu, J., 2008. Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 455(1-2), pp.259-264. [103]Han, S.W., Hasan, M.A., Cho, K.H., Lee, H.J., Kim, D.H. and Lee, H.W., 2006. Characterization of Bi2Te3 Thin Films for Application in Micro-Thermo Electric Coolers. International Journal of Modern Physics B, 20(25n27), pp.4063-4068.
|