[1]許佳蓉,2019,”手機鏡頭塑膠鏡片表面瑕疵分類”,國立臺北科技大學自動化科技研究所碩士學位論文。[2] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A., 2016, "You Only Look Once: Unified, Real- Time Object Detection", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788.
[3] Haiyang T., Shan L., Dan Y., & Yongjie Q., 2023, "A visual defect detection for optics lens based on the YOLOv5 -C3CA-SPPF network model", Optics Express, 31, 2, pp. 2628-2643.
[4] Wang, C., Sun, Q., Dong, X. et al., 2024, "Automotive adhesive defect detection based on improved YOLOv8", SIViP 18, 3, pp. 2583–2595.
[5] Wei, Z. H., Zhang, Y. J., Wang, X. J., Zhou, J. T., Dou, F. Q., & Xia, Y. H., 2024, "A YOLOV8.based approach for steel plate surface defect detection", Metalurgija, 63, 1, pp. 28-30.
[6] Lu, J., Lee, S. H., Kim, I. W., Kim, W. J., & Lee, M. S., 2023, "Small Foreign Object Detection in Automated Sugar Dispensing Processes Based on Lightweight Deep Learning Networks", Electronics, 12, 22, pp, 4621.
[7] Liu, Z., & Ye, K., 2023, "YOLO-IMF: An Improved YOLOv8 Algorithm for Surface Defect Detection in Industrial Manufacturing Field", In International Conference on Metaverse, pp. 15-28
[8] Zhang, L., et al., 2024, "Research on Improved YOLOv8 Algorithm for Insulator Defect Detection", Journal of Real-Time Image Processing, 21, 1, pp. 22.
[9] Li, W., Solihin, M.I., & Nugroho, H.A., 2024, "RCA: YOLOv8-Based Surface Defects Detection on the Inner Wall of Cylindrical High-Precision Parts," Arab Journal of Science and Engineering, pp. 1-19.
[10] Jocher, G., Chaurasia, A., & Qiu, J., 2023, "YOLO by Ultralytics. ", GitHub, Available online: https://github.com/ultralytics/ultralytics.