|
1.YIU, A.J.Y.a.C.Y., Biomarkers in Colorectal Cancer Anticancer Research, 2016. 2.Board, C.N.E., Colorectal Cancer: Statistics. 2018. 3.衛生福利部, 108年國人死因統計結果. 2020. 4.Sobin, L.H., M.K. Gospodarowicz, and C. Wittekind, TNM classification of malignant tumours. 2011: John Wiley & Sons. 5.Galiatsatos, P. and W.D. Foulkes, Familial adenomatous polyposis. American journal of gastroenterology, 2006. 101(2): p. 385-398. 6.Peltomäki, P. and A. de la Chapelle, Mutations predisposing to hereditary nonpolyposis colorectal cancer, in Advances in cancer research. 1997, Elsevier. p. 93-119. 7.Song, M., W.S. Garrett, and A.T. Chan, Nutrients, foods, and colorectal cancer prevention. Gastroenterology, 2015. 148(6): p. 1244-60.e16. 8.Liang, P.S., T.Y. Chen, and E. Giovannucci, Cigarette smoking and colorectal cancer incidence and mortality: systematic review and meta-analysis. Int J Cancer, 2009. 124(10): p. 2406-15. 9.Botteri, E., et al., Smoking and colorectal cancer: a meta-analysis. Jama, 2008. 300(23): p. 2765-78. 10.Fedirko, V., et al., Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. Ann Oncol, 2011. 22(9): p. 1958-72. 11.Wolffe, A.P. and M.A. Matzke, Epigenetics: regulation through repression. science, 1999. 286(5439): p. 481-486. 12.Chaffer, C.L. and R.A. Weinberg, A perspective on cancer cell metastasis. Science, 2011. 331(6024): p. 1559-1564. 13.Duffy, M., P. McGowan, and W. Gallagher, Cancer invasion and metastasis: changing views. The Journal of pathology, 2008. 214(3): p. 283-293. 14.Thiery, J.P., Epithelial–mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2002. 2(6): p. 442. 15.Voulgari, A. and A. Pintzas, Epithelial–mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2009. 1796(2): p. 75-90. 16.Grady, W.M. and J.M. Carethers, Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology, 2008. 135(4): p. 1079-1099. 17.Lao, V.V. and W.M. Grady, Epigenetics and colorectal cancer. Nature reviews Gastroenterology & hepatology, 2011. 8(12): p. 686-700. 18.Fraga, M.F., et al., Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature genetics, 2005. 37(4): p. 391. 19.Marks, P.A., et al., Histone deacetylase inhibitors as new cancer drugs. Current opinion in oncology, 2001. 13(6): p. 477-483. 20.Xu, W., R. Parmigiani, and P. Marks, Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene, 2007. 26(37): p. 5541-5552. 21.Mariadason, J.M., HDACs and HDAC inhibitors in colon cancer. Epigenetics, 2008. 3(1): p. 28-37. 22.Weichert, W., et al., Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clinical Cancer Research, 2008. 14(6): p. 1669-1677. 23.Wilson, A.J., et al., Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem, 2006. 281(19): p. 13548-58. 24.Zhu, P., et al., Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell, 2004. 5(5): p. 455-63. 25.Wilson, A.J., et al., Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. Journal of Biological Chemistry, 2006. 281(19): p. 13548-13558. 26.Wang, L.-T., et al., A novel class I HDAC inhibitor, MPT0G030, induces cell apoptosis and differentiation in human colorectal cancer cells via HDAC1/PKCδ and E-cadherin. Oncotarget, 2014. 5(14): p. 5651. 27.Bolden, J.E., M.J. Peart, and R.W. Johnstone, Anticancer activities of histone deacetylase inhibitors. Nature reviews Drug discovery, 2006. 5(9): p. 769-784. 28.Ocker, M. and R. Schneider-Stock, Histone deacetylase inhibitors: signalling towards p21cip1/waf1. The international journal of biochemistry & cell biology, 2007. 39(7-8): p. 1367-1374. 29.Roy, S., et al., Histone deacetylase inhibitors differentially stabilize acetylated p53 and induce cell cycle arrest or apoptosis in prostate cancer cells. Cell Death & Differentiation, 2005. 12(5): p. 482-491. 30.Zhu, Q., et al., C6-ceramide synergistically potentiates the anti-tumor effects of histone deacetylase inhibitors via AKT dephosphorylation and α-tubulin hyperacetylation both in vitro and in vivo. Cell death & disease, 2011. 2(1): p. e117-e117. 31.Kaiser, M., et al., Synergistic action of the novel HSP90 inhibitor NVP‐AUY922 with histone deacetylase inhibitors, melphalan, or doxorubicin in multiple myeloma. European journal of haematology, 2010. 84(4): p. 337-344. 32.Kong, X., et al., Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1α. Molecular and cellular biology, 2006. 26(6): p. 2019-2028. 33.Elledge, S.J., Cell cycle checkpoints: preventing an identity crisis. Science, 1996. 274(5293): p. 1664-1672. 34.Abbas, T. and A. Dutta, p21 in cancer: intricate networks and multiple activities. Nature Reviews Cancer, 2009. 9(6): p. 400-414. 35.Telles, E. and E. Seto, Modulation of cell cycle regulators by HDACs. Frontiers in bioscience (Scholar edition), 2012. 4: p. 831. 36.Zhong, L.L., et al., The efficacy of Chinese herbal medicine as an adjunctive therapy for colorectal cancer: a systematic review and meta-analysis. Complementary Therapies in Medicine, 2012. 20(4): p. 240-252. 37.Wu, T., et al., Chinese medical herbs for chemotherapy side effects in colorectal cancer patients. Cochrane Database of Systematic Reviews, 2005(1). 38.Guo, Z., et al., Herbal medicines for advanced colorectal cancer. Cochrane Database of Systematic Reviews, 2012(5). 39.Deng, S., B. Hu, and H.-M. An, Traditional Chinese medicinal syndromes and treatment in colorectal cancer. 2012. 40.Osorio-Tobón, J.F., et al., Fast analysis of curcuminoids from turmeric (Curcuma longa L.) by high-performance liquid chromatography using a fused-core column. Food chemistry, 2016. 200: p. 167-174. 41.Ji, Q., et al., Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PloS one, 2013. 8(11): p. e78700. 42.Lee, M.-Y., et al., Anti-inflammatory activity of (−)-aptosimon isolated from Daphne genkwa in RAW264. 7 cells. International immunopharmacology, 2009. 9(7-8): p. 878-885. 43.Wang, L., et al., The study on the analgesic effects and mechanism of the total flavonoids from Daphne genkwa Sieb et. Zucc. Ningxia Medical Journal, 2005. 27(1): p. 21-23. 44.Shi, F. and W. Zheng, Phenolic constituents from the roots of Daphne genkwa and their immunomodulatory activity. Journal of Xuzhou Normal University (Natural Science Edition), 2004. 22(4): p. 34-40. 45.Xie, H., et al., Preparative Isolation and Purification of Four Flavonoids from Daphne Genkwa Sieb. Et Zucc. By High-Speed Countercurrent Chromatography. J Liq Chromatogr Relat Technol, 2011. 34(19): p. 2360-2372. 46.Kumar, S. and A.K. Pandey, Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal, 2013. 2013: p. 162750. 47.Du, W.J., et al., Antitumor activity of total flavonoids from daphne genkwa in colorectal cancer. Phytotherapy Research, 2016. 30(2): p. 323-330. 48.Wang, X., et al., Antitumor and immunomodulatory activity of genkwanin on colorectal cancer in the APCMin/+ mice. International immunopharmacology, 2015. 29(2): p. 701-707. 49.衛生福利部國民健康署, 衛生福利部公布癌症發生資料. 2020. 50.Marks, P.A., et al., Histone deacetylases and cancer: causes and therapies. Nature Reviews Cancer, 2001. 1(3): p. 194-202. 51.Højfeldt, J.W., K. Agger, and K. Helin, Histone lysine demethylases as targets for anticancer therapy. Nature reviews Drug discovery, 2013. 12(12): p. 917-930. 52.Witt, O., et al., HDAC family: What are the cancer relevant targets? Cancer letters, 2009. 277(1): p. 8-21. 53.Jurkin, J., et al., Distinct and redundant functions of histone deacetylases HDAC1 and HDAC2 in proliferation and tumorigenesis. Cell cycle, 2011. 10(3): p. 406-412. 54.Kitahara, K., et al., Concurrent amplification of cyclin E and CDK2 genes in colorectal carcinomas. International journal of cancer, 1995. 62(1): p. 25-28. 55.Li, J.-Q., et al., Expression of cyclin E and cyclin-dependent kinase 2 correlates with metastasis and prognosis in colorectal carcinoma. Human pathology, 2001. 32(9): p. 945-953. 56.Li, Y., et al., HMGA2 induces transcription factor Slug expression to promote epithelial-to-mesenchymal transition and contributes to colon cancer progression. Cancer letters, 2014. 355(1): p. 130-140. 57.Yao, C., et al., IGF/STAT3/NANOG/Slug signaling axis simultaneously controls epithelial‐mesenchymal transition and stemness maintenance in colorectal cancer. Stem cells, 2016. 34(4): p. 820-831. 58.Sikandar, S., et al., The class I HDAC inhibitor MGCD0103 induces cell cycle arrest and apoptosis in colon cancer initiating cells by upregulating Dickkopf-1 and non-canonical Wnt signaling. Oncotarget, 2010. 1(7): p. 596. 59.Khan, O. and N.B. La Thangue, HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunology and cell biology, 2012. 90(1): p. 85-94. 60.Chen, C.-Y., et al., Hydroxygenkwanin Inhibits Class I HDAC Expression and Synergistically Enhances the Antitumor Activity of Sorafenib in Liver Cancer Cells. Frontiers in Oncology, 2020. 10: p. 216.
|