[1] New Propellant-Technologies for Small Calibre Ammunition. Retrieved from https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2013/IMEM/W15931_Vogelsanger.pdf (Feb. 2, 2020)
[2] MIL-STD-286C (W/CHANGE 2), MILITARY STANDARD: PROPELLANTS, SOLID: SAMPLING, EXAMINATION AND TESTING (Oct. 13, 2010)
[3] E. Varriano‐Marston, “An infrared microspectroscopy method for determining deterrent penetration in nitrocellulose‐based propellant grains,” J. Appl. Polym. Sci., vol. 33, pp. 107-116, 1987, https://doi.org/10.1002/app.1987.070330110.
[4] 吳中文,2001,以爆彈儀探討發射藥成份與藥型對燃燒特性的影響,國防大學中正理工學院應用化學研究所,碩士論文。[5] S.M. Dahiwale, C.J. Bhongale, S. Roy, P.B. Navle, S.N. Asthana, “Studies on the Ballistic Parameters of a Deterred Triple Base Propellant Used in Large Caliber Ammunition,” Central European Journal of Energetic Materials, vol. 16, no. 3, pp. 449-467, 2019.
[6] 为室温理想切片设计的超薄切片机和为冷冻无缺陷切片的冷冻超薄切片机,Leica EM UC7。檢自https://www.leica-microsystems.com.cn/cn/products/sample-preparation-for-electron-microscopy/p/leica-em-uc7/ (Feb. 5, 2021)
[7] J. Delsing, "Local Cloud Internet of Things Automation: Technology and Business Model Features of Distributed Internet of Things Automation Solutions," in IEEE Industrial Electronics Magazine, vol. 11, no. 4, pp. 8-21, Dec. 2017, doi: 10.1109/MIE.2017.2759342.
[8] M. Wollschlaeger, T. Sauter and J. Jasperneite, "The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0," in IEEE Industrial Electronics Magazine, vol. 11, no. 1, pp. 17-27, Mar. 2017, doi: 10.1109/MIE.2017.2649104.
[9] F. Bonavolontà, M. D'Arco, A. Liccardo and O. Tamburis, "Remote laboratory design and implementation as a measurement and automation experiential learning opportunity," in IEEE Instrumentation & Measurement Magazine, vol. 22, no. 6, pp. 62-67, Dec. 2019, doi: 10.1109/MIM.2019.8917906.
[10] K. H. Tantawi, A. Sokolov and O. Tantawi, "Advances in Industrial Robotics: From Industry 3.0 Automation to Industry 4.0 Collaboration," 2019 4th Technology Innovation Management and Engineering Science International Conference (TIMES-iCON), 2019, pp. 1-4, doi: 10.1109/TIMES-iCON47539.2019.9024658.
[11] M. E. Stivanello, S. Vargas, M. L. Roloff and M. R. Stemmer, "Automatic Detection and Classification of Defects in Knitted Fabrics," in IEEE Latin America Transactions, vol. 14, no. 7, pp. 3065-3073, Jul. 2016, doi: 10.1109/TLA.2016.7587603.
[12] Y. Peng, S. Ruan, G. Cao, S. Huang, N. Kwok and S. Zhou, "Automated Product Boundary Defect Detection Based on Image Moment Feature Anomaly," in IEEE Access, vol. 7, pp. 52731-52742, 2019, doi: 10.1109/ACCESS.2019.2911358.
[13] 聯勤第二0三廠,1986,發射藥理論,高雄。
[14] 余永剛,薛曉春,2016,發射藥燃燒學,北京航空航天大學出版社,北京。
[15] J. Kelly, Gunpowder: Alchemy, Bombards, And Pyrotechnics: The History Of The Explosive That Changed The World, New York, Basic Books, 2005.
[16] P. A. Lorge, The Asian Military Revolution: From Gunpowder to the Bomb (New Approaches to Asian History), Cambridge, Cambridge University Press, 2008.
[17] 王兆春,2010,中國軍事科學通史,解放軍出版社,北京。
[18] J. Needham, G.-D. Lu, and L. Wang, Science and civilisation in China, Vol. 5, Part 7, Cambridge, Cambridge University Press, 1987.
[19] O. F. G. Hogg, Artillery: its origin, heyday, and decline, Conn: Archon Books, 1970.
[20] Guide to smokeless powder. Retrieved from http://bulletin.accurateshooter.com/tag/ball-powder/ (February 2, 2020)
[21] 鄭凱心,2019,低溫感度發射藥配方及性能研究,國防大學理工學院化學及材料工程學系,碩士論文。[22] 張小兵,金志明,2014,槍炮內彈道學,北京理工大學出版社,北京。
[23] 王澤山,何衛東,徐復銘,2014,火砲發射裝藥設計原理與技術,北京理工大學出版社,北京。
[24] Propellant Geometry Type Descriptions. Retrieved from http://www.prodas.com/XQ/ASP/P.603/QX/Documents/Propellant%20Geometry%20Type%20Descriptions.pdf (Mar. 5, 2021)
[25] M. R. Grivell, The Closed Vessel Test And Determination of Ballistic Properties of Gun Propellants, Manual WSRL-0291-MA, Defence Science and Technology Organisation Weapons Systems Research Laboratory, Department of Defence South Australia, 1982.
[26] 阮望聖等人,1986,火炸藥特性手冊,聯勤第二0三廠,高雄。
[27] A. Majcher, J. Przybylski, and J. Figarski, “A Control System for Stand for Measuring the Burn Rate of Solid Rocket Propellants Using Crawford’s Method,” Journal of Machine Construction and Maintenance- Problemy Eksploatacji, no. 3, pp.67-73, Mar. 2017.
[28] P. Mehta, C. P. Shetty, R. N. Pundkar, and H. Shekhar, “Effect of Loading Densities in Closed Vessel Tests on the Burning Rate of a Propelling Charge,” Defence Science Journal, vol. 65, no. 2, pp. 126-130, Mar. 2015, doi: 10.14429/dsj.65.8158.
[29] Alvars Celminš, “Solid propellant burning rate measurement in a closed bomb,” Combustion and Flame, vol. 23, Iss. 3, BRL Report No. 1840, pp. 381-397, 1974, https://doi.org/10.1016/0010-2180(74)90121-7.
[30] J. D, Louden, I. A. Duncan, J. Kelly, and R. M. Speirs, “The application of infrared microimaging for the determination of the distribution, penetration depth, and diffusion profile of methyl centralite and dibutyl phthalate deterrents in nitrocellulose monoperforated propellant,” J. Appl. Polym. Sci., vol. 49, pp. 275-289, 1993.
[31] B. Vogelsanger, B. Ossola, and E. Bronnimann, “The Diffusion of Deterrents into Propellants Observedby FTIR Microspectroscopy - Quantification of the Diffusion Process,” Propellants, Explosives, Pyrotechnics, vol. 21, pp. 330-336, 1996.
[32] A. White, “Physical and Chemical Ballistic Modification of Small-Arms Gun Propellants”, Chemistry in Australia, pp. 319-321, 1991.
[33] J. D. Louden, J. Kelly, and J. Phillipson, “Methylcentralite Concentration Profiles in Monoperforated Extruded Nitrocellulose and NitrocelluloselNitroglycerin Propellant Grains by Raman Microspectroscopy”, J. Appl. Polym. Sci. vol. 37, pp. 3237-3250, 1989.
[34] S. Taylor, K. Dontsova, S. Bigl, C. Richardson, J. Lever, J. Pitt, J. P. Bradley, M. Walsh, and J. Simunek, ”Dissolution Rate of Propellant Energetics from Nitrocellulose Matrices,” ERDC/CRREL TR-12-9, Cold regions Research and Engineering Laboratory, Hanover, NH, 117, 2012.
[35] J. B. Quinlan, “A Microscopic Examination of Extruded Double Base Propellant,” Frankford Arsenal Report R-1302, Dec. 1955.
[36] D.C. Mann, “Development of a deterred propellant for a large caliber weapon system,” Journal of Hazardous Materials, vol. 7, Iss. 3, pp. 259-280, 1983. https://doi.org/10.1016/0304-3894(83)80016-8.
[37] 高速精密車床。檢自https://www.kinwa-lathe.com/product/html/?7.htm (Mar. 5, 2021)
[38] 臥式CNC車床。檢自https://www.victortaichung.com/machine-tools/tw/Vturn-46.htmll (Mar. 5, 2021)
[39] CNC銑床精密加工。檢自https://shuenwei.com/h/ServiceDetail?key=231720368533&cont=155219 (Mar. 5, 2021)
[40] 牛頭刨床。檢自http://www.hhntbc.com/2016-8-23/861.html (Mar. 5, 2021)
[41] 軸承表面粗糙度與加工磨削。檢自http://www.diagcors.com/newsinfo/1118173.html (Mar. 5, 2021)
[42] Bare Fiber Polisher: Radian Variable. Retrieved from https://www.meddeviceonline.com/doc/bare-fiber-polisher-radian-variable-0002 (Mar. 5, 2021)
[43] 光纖拋光機的技術。檢自http://www.agatefiber.com/Cn/TechShow.aspx?id=26 (Mar. 5, 2021)
[44] C. Qiu, "Size measurement of shaft component based on computer vision," 2012 5th International Congress on Image and Signal Processing, pp. 216-219, 2012, doi: 10.1109/CISP.2012.6469848.
[45] A. Thamna, P. Srisungsitthisunti and S. Dechjarem, "Real-Time Visual Inspection and Rejection Machine for Bullet Production," 2018 2nd International Conference on Engineering Innovation (ICEI), pp. 13-17, 2018, doi: 10.1109/ICEI18.2018.8448641.
[46] 尺寸測量 / 表面測量儀,KEYENCE,IM-7000系列影像量測儀。檢自https://www.keyence.com.tw/products/measure-sys/ (Mar. 5, 2021)
[47] COGNEX食品與飲料包裝檢測。檢自 https://www.cognex.com/zh-tw/industries/food-and-beverage/packaging-inspection (Mar. 5, 2021)
[48] M. E. Walsh, C. A. Ramsey, S. Taylor, A. D. Hewitt, K. Bjella, and C. M. Collins, “Subsampling Variance for 2,4-DNT in Firing Point Soils,” Soil & Sediment Contamination, vol. 16, pp. 459-472, 2007, doi: 10.1080/15320380701490259.
[49] Histria Defense. Retrieved from檢自http://histriadefense.ro/en/aviation/aviation-explosive/ (Mar. 5, 2021)
[50] 林正雄、蘇昱銘 (2010)。赴德國與瑞士參訪「Nitrochemie Wimmis公司火炸藥生產技術」。國防部軍備局生產製造中心第二0三廠,未出版。檢自https://report.nat.gov.tw/ReportFront/ReportDetail/detail?sysId=C09803140 (March 5, 2021)
[51] R. A Chandru, N. Balasubramanian, C. Oommen, and B. N. Raghunandan, “Additive Manufacturing of Solid Rocket Propellant Grains,” Journal of Propulsion and Power, vol. 34, pp. 1-4, 2018, doi:10.2514/1.B36734.
[52] W. Yang, R. Hu, L. Zheng, G. Yan, and W. Yan, “Fabrication and investigation of 3D-printed gun propellants,” Materials & Design, vol. 192, 2020, https://doi.org/10.1016/j.matdes.2020.108761.
[53] N. V. Muravyev, K. A. Monogarov, U. Schaller, I. V. Fomenkov, and A. N. Pivkina,” Progress in Additive Manufacturing of Energetic Materials: Creating the Reactive Microstructures with High Potential of Applications,” Prop., Explos., Pyrotech., vol. 44, pp. 941, 2019, https://doi.org/10.1002/prep.201900060.
[54] M. H. Straathof, C. A. van Driel, J. N. J. van Lingen, B. L. J. Ingenhut, A. T. ten Cate, and H. H. Maalderink, ”Development of Propellant Compositions for Vat Photopolymerization Additive Manufacturing,” Prop., Explos., Pyrotech., vol. 45, pp. 36, 2020.
[55] K. N. Hittanagi, M. Ramesh, K. N. R. Kumar, and S. K. Mahadeva, "PLC based DC drive control using Modbus RTU communication for selected applications of sugar mill," 2017 International Conference on Circuits, Controls, and Communications (CCUBE), pp. 80-85, 2017, doi: 10.1109/CCUBE.2017.8394156.
[56] S. A. Idris, F. A. Jafar, and S. Saffar, "Improving visual corrosion inspection accuracy with image enhancement filters," 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 129-132, 2015, doi: 10.1109/URAI.2015.7358876.
[57] N. Otsu, "A Threshold Selection Method from Gray-Level Histograms," in IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66, Jan. 1979, doi: 10.1109/TSMC.1979.4310076.
[58] J. Canny, "A Computational Approach to Edge Detection," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679-698, Nov. 1986, doi: 10.1109/TPAMI.1986.4767851.
[59] H. S. Hashim, S. N. H. S. Abdullah, and A. S. Prabuwono, "Automated visual inspection for metal parts based on morphology and fuzzy rules," 2010 International Conference on Computer Applications and Industrial Electronics, Kuala Lumpur, pp. 527-531, 2010, doi: 10.1109/ICCAIE.2010.5735137.
[60] M.-K. Hu, "Visual pattern recognition by moment invariants," in IRE Transactions on Information Theory, vol. 8, no. 2, pp. 179-187, February 1962, doi: 10.1109/TIT.1962.1057692.
[61] L. Feng, L. Xiaoyu, and C. Yi, "An efficient detection method for rare colored capsule based on RGB and HSV color space," 2014 IEEE International Conference on Granular Computing (GrC), Noboribetsu, pp. 175-178, 2014, doi: 10.1109/GRC.2014.6982830.
[62] D. S. Y. Kartika, and D. Herumurti, "Koi fish classification based on HSV color space," 2016 International Conference on Information & Communication Technology and Systems (ICTS), Surabaya, pp. 96-100, 2016, doi: 10.1109/ICTS.2016.7910280.
[63] 許柏鴻、吳宗益、陳文平、李庭安,藉由研磨程序之發射藥藥型檢測方法及其檢測裝置,中華民國專利發明第I685689號,Feb. 21, 2020.
[64] 許柏鴻、吳宗益、陳文平、李庭安,藉由光學程序之發射藥藥型檢測方法,中華民國專利發明第I687678號,Mar. 11, 2020.