參考文獻
[1].李宗璡,「ZnO與ZnO-CuO異質結構於氣體感測器應用研究」,碩士論文,國立高雄科技大學機械工程系,2019。[2].「1100203災防週報」 行政院災害防救辦公室, 2020。
[3].「局限空間作業危害介紹」勞動部職業安全署職業衛生健康組,2020。
[4].“1988 OSHA PEL Project Documentation” The National Institute for Occupational Safety and Health (NIOSH), 1988
[5].An, S., Park, S., Ko, H., & Lee, C. Fabrication of WO3 nanotube sensors and their gas sensing properties. Ceramics International, 2014, 40(1), 1423-1429.
[6].Tao, Y., Gao, Q., Di, J., & Wu, X. Gas sensors based on α-Fe2O3 nanorods, nanotubes and nanocubes. Journal of Nanoscience and Nanotechnology, 2013, 13(8), 5654-5660.
[7].Qin, Y., Hu, M., & Zhang, J. Microstructure characterization and NO2-sensing properties of tungsten oxide nanostructures. Sensors and Actuators B: Chemical, 2010, 150(1), 339-345.
[8].詹慶安,「SnO2-ZnO與SnO2-La2O3異質結構於氣體感測器應用研究」,碩士論文,國立高雄應用科技大學機械工程系,2018。[9].吳佩岑,「二氧化鈦奈米管於濕度與氣體感測器之研究」,碩士論文,國立高雄應用科技大學機械與精密工程研究所,2015。[10].Hsu, K. C., Fang, T. H., Hsiao, Y. J., & Wu, P. C. Response and characteristics of TiO2/perovskite heterojunctions for CO gas sensors. Journal of Alloys and Compounds, 2019, 794, 576-584.
[11].González-Borrero, P. P., Sato, F., Medina, A. N., Baesso, M. L., Bento, A. C., Baldissera, G., ... & Ferreira da Silva, A. Optical band-gap determination of nanostructured WO3 film. Applied Physics Letters, 2010, 96(6), 061909.
[12].Wang, Z., Wang, H., Gu, X., & Cui, H. N. Hierarchical structure WO3/TiO2 complex film with enhanced electrochromic performance. Solid State Ionics, 2019, 338, 168-176.
[13].Kamble, C., & Panse, M. IDE embedded tungsten trioxide gas sensor for sensitive NO2 detection. Materials Chemistry and Physics, 2019, 224, 257-263.
[14].Behera, B., & Chandra, S. Synthesis of WO3 nanorods by thermal oxidation technique for NO2 gas sensing application. Materials Science in Semiconductor Processing, 2018, 86, 79-84.
[15].Harale, N. S., Dalavi, D. S., Mali, S. S., Tarwal, N. L., Vanalakar, S. A., Rao, V. K., ... & Patil, P. S. Single-step hydrothermally grown nanosheet-assembled tungsten oxide thin films for sensitive and selective NO2 gas detection. Journal of materials science, 2018, 53(8), 6094-6105.
[16].Yang, A., Wang, D., Lan, T., Chu, J., Li, W., Pan, J., ... & Rong, M. Single ultrathin WO3 nanowire as a superior gas sensor for SO2 and H2S: Selective adsorption and distinct IV response. Materials Chemistry and Physics, 2020, 240, 122165.
[17].Poongodi, S., Kumar, P. S., Mangalaraj, D., Ponpandian, N., Meena, P., Masuda, Y., & Lee, C. Electrodeposition of WO3 nanostructured thin films for electrochromic and H2S gas sensor applications. Journal of Alloys and Compounds, 2017, 719, 71-81.
[18].Leng, J. Y., Xu, X. J., Lv, N., Fan, H. T., & Zhang, T. Synthesis and gas-sensing characteristics of WO3 nanofibers via electrospinning. Journal of colloid and interface science, 2011, 356(1), 54-57.
[19].Chou, T. C., Chang, C. H., Lee, C., & Liu, W. C. Ammonia sensing characteristics of a tungsten trioxide thin-film-based sensor. IEEE Transactions on Electron Devices, 2018, 66(1), 696-701.
[20].Galstyan, V., Poli, N., D'Arco, A., Macis, S., Lupi, S., & Comini, E. A novel approach for green synthesis of WO3 nanomaterials and their highly selective chemical sensing properties. Journal of Materials Chemistry A, 2020, 8(39), 20373-20385.
[21].Cao, S., Zhao, C., Han, T., & Peng, L. Hydrothermal synthesis, characterization and gas sensing properties of the WO3 nanofibers. Materials Letters, 2016, 169, 17-20.
[22].Zeb, S., Peng, X., Yuan, G., Zhao, X., Qin, C., Sun, G., ... & Jiang, X. Controllable synthesis of ultrathin WO3 nanotubes and nanowires with excellent gas sensing performance. Sensors and Actuators B: Chemical, 2020, 305, 127435.
[23].Wang, C., Zhang, Y., Sun, X., Sun, Y., Liu, F., Yan, X., ... & Lu, G. Preparation of Pd/PdO loaded WO3 microspheres for H2S detection. Sensors and Actuators B: Chemical, 2020, 321, 128629.
[24].Yuan, K., Wang, C. Y., Zhu, L. Y., Cao, Q., Yang, J. H., Li, X. X., ... & Zhang, D. W. Fabrication of a micro-electromechanical system-based acetone gas sensor using CeO2 nanodot-decorated WO3 nanowires. ACS Applied Materials & Interfaces, 2020, 12(12), 14095-14104.
[25].Fergus, J. W. Perovskite oxides for semiconductor-based gas sensors. Sensors and Actuators B: Chemical, 2007, 123(2), 1169-1179.
[26].Tie, Y., Ma, S. Y., Pei, S. T., Zhang, Q. X., Zhu, K. M., Zhang, R., ... & Liu, W. W. Pr doped BiFeO3 hollow nanofibers via electrospinning method as a formaldehyde sensor. Sensors and Actuators B: Chemical, 2020, 308, 127689.
[27].Li, X., Dai, L., He, Z., Meng, W., Li, Y., & Wang, L. Enhancing NH3 sensing performance of mixed potential type sensors by chemical exsolution of Ag nanoparticle on AgNbO3 sensing electrode. Sensors and Actuators B: Chemical, 2019, 298, 126854.
[28].Benali, A., Azizi, S., Bejar, M., Dhahri, E., & Graça, M. F. P. Structural, electrical and ethanol sensing properties of double-doping LaFeO3 perovskite oxides. Ceramics International, 2014, 40(9), 14367-14373.
[29].Thirumalairajan, S., Girija, K., Mastelaro, V. R., & Ponpandian, N. Investigation on magnetic and electric properties of morphologically different perovskite LaFeO3 nanostructures. Journal of Materials Science: Materials in Electronics, 2015, 26(11), 8652-8662.
[30].Doroftei, C., Popa, P. D., & Iacomi, F. Synthesis of nanocrystalline La–Pb–Fe–O perovskite and methanol-sensing characteristics. Sensors and Actuators B: Chemical, 2012, 161(1), 977-981.
[31].Bhargav, K. K., Ram, S., & Majumder, S. B. Small polaron conduction in lead modified lanthanum ferrite ceramics. Journal of Alloys and Compounds, 2015, 638, 334-343.
[32].Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice?. Materials Science and Engineering: B, 2007, 139(1), 1-23.
[33].楊士弘,「金屬氧化物奈米結構應用於氣體感測器」,碩士論文,國立高雄應用科技大學機械與精密工程研究所,2016。[34].Bai, X., Lv, H., Liu, Z., Chen, J., Wang, J., Sun, B., ... & Shi, K. Thin-layered MoS2 nanoflakes vertically grown on SnO2 nanotubes as highly effective room-temperature NO2 gas sensor. Journal of Hazardous Materials, 2021, 416, 125830.
[35].Cai, H., Liu, H., Ni, T., Pan, Y., Zhao, Y., & Zhu, Y. Controlled synthesis of pt doped SnO2 mesoporous hollow nanospheres for highly selective and rapidly detection of 3-hydroxy-2-butanone biomarker. Frontiers in Chemistry, 2019, 7, 843.
[36].Mirzaei, A., Leonardi, S. G., & Neri, G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceramics International, 2016, 42(14), 15119-15141.
[37].Chen, X., Wong, C. K., Yuan, C. A., & Zhang, G. Nanowire-based gas sensors. Sensors and Actuators B: Chemical, 2013, 177, 178-195.
[38].Guo, W., Liu, T., Zhang, H., Sun, R., Chen, Y., Zeng, W., & Wang, Z. Gas-sensing performance enhancement in ZnO nanostructures by hierarchical morphology. Sensors and Actuators B: Chemical, 2012, 166, 492-499.
[39].蕭文澤、薛丁仁和黃國政,「金屬氧化物半導體氣體感測器用材料回顧」,科儀新知 223 (2020): 63-76。
[40].Leach, C., Ling, Z., & Freer, R. Direct observation of the barrier structure in a heterojunction gas sensor using conductive mode microscopy. Scripta materialia, 2000, 42(11), 1083-1088.
[41].Zhang, J., Liu, J., Peng, Q., Wang, X., & Li, Y. Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chemistry of materials, 2006, 18(4), 867-871.
[42].Zhang, D., Liu, Z., Li, C., Tang, T., Liu, X., Han, S., ... & Zhou, C. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano letters, 2004, 4(10), 1919-1924.
[43].Costa, C., Pinheiro, C., Henriques, I., & Laia, C. A. Inkjet printing of sol–gel synthesized hydrated tungsten oxide nanoparticles for flexible electrochromic devices. ACS Applied Materials & Interfaces, 2012, 4(3), 1330-1340..
[44].Jiang, T., & Guo, Z. Robust superhydrophobic tungsten oxide coatings with photochromism and UV durability properties. Applied Surface Science, 2016, 387, 412-418.
[45].Kaiser, F., Simon, P., Burkhardt, U., Kieback, B., Grin, Y., & Veremchuk, I. Spark Plasma Sintering of Tungsten Oxides WOx (2.50≤ x≤ 3): Phase Analysis and Thermoelectric Properties. Crystals, 2017, 7(9), 271.
[46].Antolini, E., & Gonzalez, E. R. Tungsten-based materials for fuel cell applications. Applied Catalysis B: Environmental, 2010, 96(3-4), 245-266.
[47].Wei, T. C., Wang, H. P., Li, T. Y., Lin, C. H., Hsieh, Y. H., Chu, Y. H., & He, J. H. Photostriction of CH3NH3PbBr3 perovskite crystals. Advanced Materials, 2017, 29(35), 1701789.
[48].Jing, H., Peng, R., Ma, R. M., He, J., Zhou, Y., Yang, Z., ... & Wang, M. Flexible ultrathin single-crystalline perovskite photodetector. Nano letters, 2020, 20(10), 7144-7151.
[49].Li, C., Ma, Y., Xiao, Y., Shen, L., & Ding, L. Advances in perovskite photodetectors. InfoMat, 2020, 2(6), 1247-1256.
[50].Wang, H., Cheng, G., Xie, J., Zhao, S., Qin, M., Chan, C. C., ... & Yan, K. Bulk heterojunction quasi-two-dimensional perovskite solar cell with 1.18 V high photovoltage. ACS Applied Materials & Interfaces, 2018, 11(3), 2935-2943.
[51].Zhang, Q., Ting, H., Wei, S., Huang, D., Wu, C., Sun, W., ... & Xiao, L. Recent progress in lead-free perovskite (-like) solar cells. Materials Today Energy, 2018, 8, 157-165.
[52].Javed, M. S., Raza, R., Ahsan, Z., Rafique, M. S., Shahzadi, S., Shaukat, S. F., ... & Zhu, B. Electrochemical studies of perovskite cathode material for direct natural gas fuel cell. International Journal of Hydrogen Energy, 2016, 41(4), 3072-3078.
[53].Karaismailoglu, M., Guldal, N. O., Figen, H. E., & Baykara, S. Z. Molybdenum‐and vanadium‐containing perovskite electrocatalysts for dissociation of H2S. International Journal of Energy Research, 2020, 44(3), 2368-2374.
[54].Zhu, M., Miao, J., Duan, X., Guan, D., Zhong, Y., Wang, S., ... & Shao, Z. Postsynthesis growth of CoOOH nanostructure on SrCo0.6Ti0.4O3− δ perovskite surface for enhanced degradation of aqueous organic contaminants. ACS Sustainable Chemistry & Engineering, (2018, 6(11), 15737-15748.
[55].Hu, Q., Yue, B., Shao, H., Yang, F., Wang, J., Wang, Y., & Liu, J. Facile syntheses of perovskite type LaMO3 (M= Fe, Co, Ni) nanofibers for high performance supercapacitor electrodes and lithium-ion battery anodes. Journal of Alloys and Compounds, 2021, 852, 157002.
[56].Shingange, K., Swart, H. C., & Mhlongo, G. H. LaBO3 (B= Fe, Co) nanofibers and their structural, luminescence and gas sensing characteristics. Physica B: Condensed Matter, 2020, 578, 411883.
[57].Toàn, N. N., Saukko, S., & Lantto, V. Gas sensing with semiconducting perovskite oxide LaFeO3. Physica B: Condensed Matter, 2003, 327(2-4), 279-282.
[58].Liu, X., Ji, H., Gu, Y., & Xu, M. Preparation and acetone sensitive characteristics of nano-LaFeO3 semiconductor thin films by polymerization complex method. Materials Science and Engineering: B, 2006, 133(1-3), 98-101.
[59].Sukee, A., Alharbi, A. A., Staerz, A., Wisitsoraat, A., Liewhiran, C., Weimar, U., & Barsan, N. Effect of AgO loading on flame-made LaFeO3 p-type semiconductor nanoparticles to acetylene sensing. Sensors and Actuators B: Chemical, 2020, 312, 127990.
[60].Barbero, B. P., Gamboa, J. A., & Cadús, L. E. Synthesis and characterisation of La1− xCaxFeO3 perovskite-type oxide catalysts for total oxidation of volatile organic compounds. Applied Catalysis B: Environmental, 2006, 65(1-2), 21-30.
[61].Yakovleva, I. S., Isupova, L. A., Tsybulya, S. V., Chernysh, A. V., Boldyreva, N. N., Alikina, G. M., & Sadykov, V. A. Mechanochemical synthesis and reactivity of La1− xSrxFeO3−y perovskites (0≤ x≤ 1, Journal of Materials Science, 2004, 39(16), 5517-5521.
[62].Song, P., Qin, H., Zhang, L., An, K., Lin, Z., Hu, J., & Jiang, M. The structure, electrical and ethanol-sensing properties of La1−xPbxFeO3 perovskite ceramics with x≤ 0.3. Sensors and Actuators B: Chemical, 2005, 104(2), 312-316.
[63].Doroftei, C. Structural, electric and humidity sensitivity properties of Zn-doped LPFO thin films deposited by rf magnetron sputtering. Materials Chemistry and Physics, 2015, 157, 16-20.
[64].Zhang, L., Hu, J., Song, P., Qin, H., & Jiang, M. Electrical properties and ethanol-sensing characteristics of perovskite La1−xPbxFeO3. Sensors and Actuators B: Chemical, 2006, 114(2), 836-840.
[65].Xu, T., Ding, Y., Liang, Z., Sun, H., Zheng, F., Zhu, Z., ... & Fong, H. Three-dimensional monolithic porous structures assembled from fragmented electrospun nanofiber mats/membranes: Methods, properties, and applications. Progress in Materials Science, 2020, 112, 100656.
[66].Gao, S., Wang, N., Li, S., Li, D., Cui, Z., Yue, G., ... & Zhao, Y. A Multi‐Wall Sn/SnO2@ Carbon Hollow Nanofiber Anode Material for High‐Rate and Long‐Life Lithium‐Ion Batteries. Angewandte Chemie International Edition, 2020, 59(6), 2465-2472.
[67].Zhang, J., Zhang, L., Leng, D., Ma, F., Zhang, Z., Zhang, Y., ... & Lu, H. Nanoscale Pd catalysts decorated WO3–SnO2 heterojunction nanotubes for highly sensitive and selective acetone sensing. Sensors and Actuators B: Chemical, 2020, 306, 127575..
[68].Tao, W. H., & Tsai, C. H. H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining. Sensors and Actuators B: Chemical, 2002, 81(2-3), 237-247.
[69].Vuong, N. M., Kim, D., & Kim, H. Porous Au-embedded WO3 nanowire structure for efficient detection of CH4 and H2S. Scientific reports, 2015, 5(1), 1-13.
[70].Jain, R. K., & Khanna, A. CuO-doped WO3 thin film H2S sensors. Sensors and Actuators B: Chemical, 2021, 130153.
[71].Shi, J., Cheng, Z., Gao, L., Zhang, Y., Xu, J., & Zhao, H. Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties. Sensors and Actuators B: Chemical, 2016, 230, 736-745.
[72].Kapse, V. D., Ghosh, S. A., Chaudhari, G. N., & Raghuwanshi, F. C. Nanocrystalline In2O3-based H2S sensors operable at low temperatures. Talanta, 2008, 76(3), 610-616.
[73].Jin, C., Park, S., Kim, H., & Lee, C. Enhanced H2S gas-sensing properties of Pt-functionalized ZnSnO3 nanorods. Journal of the Korean Physical Society, 60(5), 2012, 699-703.
[74].Huang, H. M., Li, H. Y., Wang, X. X., & Guo, X. Detecting low concentration of H2S gas by BaTiO3 nanoparticle-based sensors. Sensors and Actuators B: Chemical, 2017, 238, 16-23.
[75].Sun, G. J., Kheel, H., Lee, J. K., Choi, S., Lee, S., & Lee, C. H2S gas sensing properties of Fe2O3 nanoparticle-decorated NiO nanoplate sensors. Surface and Coatings Technology, 2016, 307, 1088-1095.