|
1.衛生福利部台灣中藥典第四版編修委員:台灣中藥典 (第四版)。衛生福利部中醫藥司,台北 2021 pp. 345-347。 2.Li-Weber M. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev. 2009; 35(1): 57-68. 3.Bai JN, Wang QC, Qi JX, Yu HQ, Wang C, Wang XW, Ren YR and Yang FD. Promoting effect of baicalin on nitric oxide production in CMECs via activating the PI3K-AKT-eNOS pathway attenuates myocardial ischemia–reperfusion injury. Phytomed. 2019; 63: 153035. 4.Wang ZL, Wang S, Kuang Y, Hu ZM, Qiao X and Ye M. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm Biol. 2018; 56(1): 465-484. 5.Lin L, Wu XD, Davey AK and Wang JP. The anti-inflammatory effect of baicalin on hypoxia/reoxygenation and TNF-α induced injury in cultural rat cardiomyocytes. Phytother Res. 2009; 24(3): 429-437. 6.Tan YQ, Lin F, Ding YK, Dai S, Liang YX, Zhang YS, Li J and Chen HW. Pharmacological properties of total flavonoids in Scutellaria baicalensis for the treatment of cardiovascular diseases. Phytomed. 2022; 107: 154458. 7.Zhang YQ, Liao PP, Zhu ME, Li W, Hu D, Guan SM and Chen L. Baicalin attenuates cardiac dysfunction and myocardial remodeling in a chronic pressure-overload mice model. Cell Physiol Biochem. 2017; 41(3): 849–864. 8.Keene BW, Atkins CE, Bonagura JD, Fox PR, Haggstrom J, Fuentes VL, Oyama MA, Rush JE, Stepien R and Uechi M. ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dogs. J Vet Intern Med. 2019; 33: 1127–1140. 9.Hezzell MJ, Boswood A, Lopez-Alvarez Llt J, Lotter N and Elliott J. Treatment of dogs with compensated myxomatous mitral valve disease with spironolactone—a pilot study. J Vet Cardiol. 2017; 19(4): 325-338. 10.Ames MK, Atkins CE and Pitt B. The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med. 2019; 33(2): 363-382. 11.Bujak M, Ren G, Kweon HJ, Dobaczewski M, Reddy A, Taffet G, Wang XF and Frangogiannis NG. Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation. 2007; 116(19): 2127–2138. 12.Dobaczewski M, Bujak M, Li N, Gonzalez-Quesada C, Mendoza LH, Wang XF and Frangogiannis NG. Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ Res. 2010; 107(3): 418–428. 13.Zhang D, Gaussin V, Taffet GE, Belaguli NS, Yamada M, Schwartz RJ, Michael LH, Overbeek PA and Schneider MD. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat Med. 2000; 6: 556-563. 14.梁‧陶弘景:本草經集注 (輯複本)。鳳凰出版社,中國 2023。 15.王文麗、吳迎微、趙漢青:歷代治疫處方中黃芩的本草考證。中醫學 2021; 10(5): 650-655。 16.明‧李時珍:本草綱目,洪寶齋書局,1916。 17.明‧李中梓:雷公炮製藥性解,人民軍醫出版社,2013。 18.清‧陳士鐸:本草新編,中國中醫藥出版社,1996。 19.清‧汪昂:本草備藥,人民衛生出版社,2017。 20.薛亞、朱為康、李雁、朱海青、駱瑩濱、王宇立、崔闖:《傷寒論》中黃芩的本草考證。上海中醫藥雜誌 2021; 55(5): 33-37。 21.陳玉民、李瓊、齊文升:小柴胡湯臨床心悟。北京中醫藥 2020; 39(5): 468-470。 22.傅延齡:大黃黃連瀉心湯、芩連劑-理論與應用。北市中醫會刊 2013; 19(3&4): 4-10。 23.陳榮洲:傷寒論痞證的研究。中西整合醫學雜誌 2012; 14(3): 1-11。 24.李培生:傷寒論精選讀本 (承啟版)。知音出版社,台北,2004。 25.Zhao TT, Tang HL, Xie L, Zheng Y, Ma ZB, Sun QA and Li XF. Scutellaria baicalensis Georgi. (Lamiaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J Pharm Pharmacol. 2019; 71(9): 1353-1369. 26.Liu SH and Cheng YC. Old formula, new Rx: The journey of PHY906 as cancer adjuvant therapy. J Ethnopharmacol. 2012; 140(3): 614-623. 27.Lam W, Bussom S, Guan FL, Jiang ZL, Zhang W, Gullen EA, Liu SH and Cheng YC. The four-herb chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Sci Transl Med. 2010; 2(45): 45ra59. 28.Lam W, Jiang ZL, Guan FL, Huang X, Hu R, Wang J, Bussom S, Liu SH, Zhao HY, Yen Y and Cheng YC. PHY906(KD018), an adjuvant based on a 1800-year-old Chinese medicine, enhanced the anti-tumor activity of Sorafenib by changing the tumor microenvironment. Sci Rep. 2015; 5: 9384. 29.Saif MW, Lansigan F, Ruta S, Lamb L, Mezes M, Ellifers K, Grant N, Jiang ZL, Liu SH and Cheng YC. Phase I study of the botanical formulation PHY906 with capecitabine in advanced pancreatic and other gastrointestinal malignancies. Phytomed. 2010; 17(3-4): 161-169. 30.Changou CA, Shiah HS, Chen LT, Liu S, Luh F, Liu SH, Cheng YC and Yen Y. A phase II clinical trial on the combination therapy of PHY906 plus capecitabine in hepatocellular carcinoma. J Oncol. 2021; 26(3): e367-e373. 31.Rockwell S, Grove TA, Liu YF, Cheng YC, Higgins SA and Booth CJ. Preclinical studies of the Chinese Herbal Medicine formulation PHY906 (KD018) as a potential adjunct to radiation therapy. Int J Radiat Biol. 2013; 89(1): 16-25. 32.Yimam M, Lee YC and Jia Q. Effect of a botanical composition, UP446, on respiratory, cardiovascular and central nervous systems in beagle dogs and rats. Regul Toxicol Pharmacol. 2016; 77: 184-191. 33.Yimam M, Brownell L, Pantier M and Jia Q. UP446, analgesic and anti-inflammatory botanical composition. Pharmacogn Res. 2013; 5(3): 139-145. 34.Xin LY, Gao JL, Lin HC, Qu Y, Shang C, Wang YL, Lu YD and Cui XN. Regulatory mechanisms of baicalin in cardiovascular diseases: a review. Front Pharmacol. 2020; 11: 583200. 35.Liu XB, Gu JM, Shi HH and Jiang ME. Baicalin attenuates acute myocardial infarction of rats via mediating the mitogen-activated protein kinase pathway. Biol Pharm Bull. 2013; 36(6): 988-994. 36.Lai CC, Huang PH, Yang AH, Chiang SC, Tang CY, Tseng KW and Huang CH. Baicalein attenuates lung injury indecede by myocardial ischemia and reperfusion. Am J Chin Med. 2017; 45(4): 791-811. 37.Aimo A, Castiglione V, Borrelli C, Saccaro LF, Franzini M, Masi S, Emdin M and Giannoni A. Oxidative stress and inflammation in the evolution of heart failure: from pathophysiology to therapeutic strategies. Eur J Prev Cardiol. 2020; 27(5): 494-510. 38.Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, Matsumura Y, Ueno H, Tada M and Hori M. Involvement of reactive oxygen species-mediated NF- κ B activation in TNF-α-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol. 2002; 34(2): 233-240. 39.Liu RM and Desai LP. Reciprocal regulation of TGF-β and reactive oxygen species: a perverse cycle for fibrosis. Redox Biol. 2015; 6: 565-577. 40.Park SK, Kim JA, Seomun Y, Choi JK, Kim DH, Han IO, Lee EJH, Chung SK and Joo CK. Hydrogen peroxide is a novel inducer of connective tissue growth factor. Biochem Biophys Res Commun. 2001; 284(4): 966-971. 41.Mann DL. Stress-activated cytokines and the heart: from adaptation to maladaptation. Annu Rev Physiol. 2003; 65: 81-101. 42.Mann DL. Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ Res. 2015; 116: 1254-1268. 43.Kai H, Mori T, Tokuda K, Takayama N, Tahara N, Takemiya K, Kudo H, Sugi Y, Fukui D, Yasukawa H, Kuwahara F and Imazumi T. Pressure overload-induced transient oxidative stress mediates perivascular inflammation and cardiac fibrosis through angiotensin II. Hypertens Res. 2006; 29(9): 711-718. 44.Yu HL, Chen B and Ren Q. Baicalin relieves hypoxia-aroused H9c2 cell apoptosis by activating Nrf2/HO-1-mediated HIF1α/BNIP3 pathway. Artif Cells Nanomed Biotechnol. 2019; 47(1): 3657-3663. 45.Bei W, Jing L and Chen N. Cardio protective role of wogonin loaded nanoparticle against isoproterenol induced myocardial infarction by moderating oxidative stress and inflammation. Colloids Surf B Biointerfaces. 2020; 185: 110635. 46.Kumar M, Kasala ER, Bodduluru LN, Dahiya V and Lahkar M. Baicalein protects isoproterenol induced myocardial ischemic injury in male Wistar rats by mitigating oxidative stress and inflammation. Inflamm Res. 2016; 65(8): 613-622. 47.Rosenkranz S. TGF-β1 and angiotensin networking in cardiac remodeling. Cardiovasc Res. 2004; 63(3): 423-432. 48.Yukie K, Makoto K, Hisayoshi D and Hiroshi N. Tissue angiotensin-converting enzyme activity plays an important role in pressure overload–induced cardiac fibrosis in rats. J Cardiovasc Pharmacol. 2002; 39(4): 600-609. 49.Xiao YC, Ye JT, Zhou Y, Huang JJ, Liu XW, Huang BY, Zhu L, Wu B, Zhang GS and Cai Y. Baicalin inhibits pressure overload-induced cardiac fibrosis through regulating AMPK/TGF-β/Smads signaling pathway. Arch Biochem Biophys. 2018; 640: 37-46. 50.Wang AW, Song LN, Mao J, Wang HX, Tain C, Jiang X, Han QY, Yu LQ, Liu Y, Du Jie, Xia YL and Li HH. Baicalein attenuates angiotensin II-Induced cardiac remodeling via inhibition of AKT/mTOR, ERK1/2, NF-κB, and calcineurin signaling pathways in mice. Am J Hypertens. 2015; 28(4): 518-526. 51.Shi XJ, Hu YJ, Jiang YX, Wu JW, Zhang C, Zhang JP, Wu SY, Wu YS, Dong WB and Li J. Scutellarein protects against cardiac hypertrophy via suppressing TRAF2/NF-κB signaling pathway. Mol Biol Rep. 2022; 49: 2085-2095. 52.Chen HM, Liou SF, Hsu JH, Chen TJ, Cheng TL, Chiu CC, Yeh JL. Baicalein inhibits HMGB1 release and MMP-2/-9 expression in lipopolysaccharide-induced cardiac hypertrophy. Am J Chin Med. 2014; 42(4): 785-797. 53.Shi XW, Zhang B, Chu ZL, Han BJ, Zhang XP, Huang P and Han JB. Wogonin inhibits cardiac hypertrophy by activating Nrf-2-mediated antioxidant responses. Cardiovasc Ther. 2021: 9995342. 54.林吉強、張淑改、丁光生、嚴家貴。治療高血壓藥物的研究V.狗口服黃芩的毒性和實驗治療。生理學報 1958; 3: 249-255。 55.王師凱、詹益萍、林辰柔、林荀龍。台灣中部地區犬慢性退行性二尖瓣逆流病程之前瞻性研究。台灣獸醫學雜誌。2013; 39(4): 233-240。 56.Mattin MJ, Boswood A, Church DB, Lopez-Alvarez J, McGreevy PD, O’Neil DG, Thomson PC and Brobelt DC. Prevalence of and risk factors for degenerative mitral valve disease in dogs attending primary-care veterinary practices in England. J Vet Intern Med. 2015; 29(3): 847-854. 57.O’Brian MJ, Beijerink NJ and Wade CM. Genetics of canine myxomatous mitral valve disease. Anim Genet. 2021; 52(4): 409-421. 58.Mead SE, Beijerink NJ, O’Brien M and Wade CM. Genetic variants at the nebulette locus are associated with myxomatous mitral valve disease severity in cavalier king Charles spaniels. Genes. 2022; 13(12): 2292. 59.Borgarelli M, Buchanan JW. Historical review, epidemiology, and natural history of degenerative mitral valve disease. J Vet Cardiol. 2012; 14(1): 93-101. 60.Borgarelli M, Zini E, D’Agnolo G, Tarducci A, Santilli RA, Chiavegato D, Tursi M, Prunotto M and Haggstrom J. Comparison of primary mitral valve disease in German Shepherd dogs and in small breeds. J Vet Cardiol. 2004; 6(2): 27-34. 61.Orton EC, Lacerda CMR. Signaling pathways in mitral valve degeneration. J Vet Cardiol. 2012; 14(1):7-17. 62.Oyama MA, Levy RJ. Insights into serotonin signaling mechanisms associated with canine degenerative mitral valve disease. J Vet Intern Med. 2010; 24(1): 27-36. 63.Arndt JW, Reynold CA, Singletary GE, Connolly JM, Levy RJ and Oyama MA. Serum serotonin concentrations in dogs with degenerative mitral valve disease. J Vet Intern Med. 2009; 23(6): 1208-1213. 64.Tang QY, McNair AJ, Phadwal K, Macrae VE and Cocoran BM. The role of transforming growth factor-β signaling in myxomatous mitral valve degeneration. Front Cardiovasc Med. 2022; 9: 872288. 65.Fox PR. Pathology of myxomatous mitral valve disease in the dog. J Vet Cardiol. 2012; 14(1): 103-126. 66.Toaldo MB, Romito G, Guglielmini C, Diana A, Pelle NG, Contiero B and Ciprone M. Prognostic value of echocardiographic indices of left atrial morphology and function in dogs with myxomatous mitral valve disease. J Vet Intern Med. 2018; 32(3): 914-921. 67.Hezzell MJ, Boswood A, Moonarmart W and Elliott J. Selected echocardiographic variables change more rapidly in dogs that die from myxomatous mitral valve disease. J Vet Cardiol. 2012; 14(1): 269-279. 68.Han DH, Lee DG and Jung DI. Echocardiographic evaluation of heart failure in dogs with myxomatous mitral valve disease: a retrospective study. J Biomed Transl Res. 2018; 19(4): 79-85. 69.Sargent J, Connolly DJ, Watts V, Mõtsküla P, Volk HA, Lamb CR and Fuentes VL. Assessment of mitral regurgitation in dogs: comparison of results of echocardiography with magnetic resonance imaging. J Small Anim Pract. 2015; 56(11): 641-650. 70.Vezzosi T, Grosso G, Tognetti R, Meucci V, Patata V, Marchesotti F and Domenech O. The Mitral INsufficiency Echocardiographic score: A severity classification of myxomatous mitral valve disease in dogs. J Vet Intern Med. 2021; 35(3): 1238-1244. 71.Hezzell MJ, Boswood A, Lopez-Alvarez Llt J, Lotter N and Elliott J. Treatment of dogs with compensated myxomatous mitral valve disease with spironolactone—a pilot study. J Vet Cardiol. 2017; 19(4): 325-338. 72.Chetboul V, Serres F, Tissier R, Lefebvre HP, Sampedrano CC, Gouni V, Poujol L, Hawa G and Pouchelon JL. Association of plasma N-terminal pro-B-type natriuretic peptide concentration with mitral regurgitation severity and outcome in dogs with asymptomatic degenerative mitral valve disease. J Vet Intern Med. 2009; 23(5): 984-994. 73.Ljungvall I, Hoglund K, Tidholm A, Olsen LH, Borgarelli M, Venge P and Haggstrom J. Cardiac troponin I is associated with severity of myxomatous mitral valve disease, age and C-reactive protein in dogs. J Vet Intern Med. 2010; 24(1): 153-159. 74.Park SY, Oh WS and Lee SG. Amlodipine decreases mitral regurgitation volume in dogs over 7 days: A study of 24 dogs with myxomatous mitral valve degeneration. Vet Rec Open. 2022; 9(1): e33. 75.Villar AV, Cobo M, Llano M, Montalvo C, Gonzalez-Vichez F, Martin-Duran R, Hurie MA and Nistal JF. Plasma Levels of Transforming Growth Factor-β1 Reflect Left Ventricular Remodeling in Aortic Stenosis. Plos One. 2009; 4(12): e8476. 76.Osuga T, Morita T, Sasaki N, Morishita K, Ohta H and Takiguchi M. Prognostic value of left ventricular-arterial coupling estimated using echocardiography in dogs with myxomatous mitral valve disease. J Vet Intern Med. 2021; 35(6): 2607-2615. 77.Nair AB and Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016; 7(2): 27–31. 78.Chan IP, Wu SY, Chang CC and Chen WY. Serial measurements of cardiac troponin I in heart failure secondary to canine mitral valve disease. Vet Rec. 2019; 185(11): 343. 79.Coffman M, Guillot E, Blondel T, Garelli-Paar C, Feng S, Heartsill S and Atkins CE. Clinical efficacy of a benazepril and spironolactone combination in dogs with congestive heart failure due to myxomatous mitral valve disease: The benazepril spironolactone study (BESST). J Vet Intern Med. 2021; 35(4): 1673-1687. 80.Varadarajan V, Ambale-Venkatesh B, Hong SY, Habibi M, Ashikaga H, Wu CO, Chen LY, Heckbert SR, Bluemke DA and Lima JA. Association of longitudinal changes in NT-proBNP with changes in left atrium volume and function: MESA. Am J Hypertens. 2021; 34(6): 625-635. 81.Sargent J, Muzzi R, Mukherjee R, Somarathne S, Schranz K, Stephenson H, Connolly D, Brodbet D and Fuentes VL. Echocardiographic predictors of survival in dogs with myxomatous mitral valve disease. J Vet Cardiol. 2015; 17(1): 1-12. 82.Borgarelli M, Ferasin L, Lamb K, Chiavegato D, Bussadori C, D’Agnolo G, Migliorini F, Poggi M, Santilli RA, Guillot E, Garelli-Paar C, Corneliani RT, Farina F, Zani A, Dirven M, Smets P, Guglielmini C, Oliveira P, Marcello MD, Prociello F and Toaldo MB. The predictive value of clinical, radiographic, echocardiographic variables and cardiac biomarkers for assessing risk of the onset of heart failure or cardiac death in dogs with preclinical myxomatous mitral valve disease enrolled in the DELAY study. J Vet Cardiol. 2021; 36: 77-88. 83.You JY, Wu J, Zhang Q, Ye Y, Wang SJ, Huang JY, Liu HB, Wang XY, Zhang WJ, Bu LP, Li JM, Lin L, Ge JB and Zou YZ. Differential cardiac hypertrophy and signaling pathways in pressure versus volume overload. Am J Physiol Heart Circ Physiol. 2018; 314(3): 552-562. 84.Eerola A, Jokinen EO, Savukoski TI, Pettersson KSI, Poutanen T and Pihkala JI. Cardiac troponin I in congenital heart defects with pressure or volume overload. Scand Cardiovasc J. 2012; 47(3): 154-159. 85.Liu HX, Cheng Y, Chu JF, Wu MZ, Yan MC, Wang D, Xie QR, Ali F, Fang Y, Wei LH, Yang YY, Shen AL and Peng J. Baicalin attenuates angiotensin II-induced blood pressure elevation and modulates MLCK/p-MLC signaling pathway. Biomed Pharmacol. 2021; 143: 112124. 86.Ding LLQ, Jia CL, Zhang Y, Wang WJ, Zhu WL, Chen Y and Zhang T. Baicalin relaxes vascular smooth muscle and lowers blood pressure in spontaneously hypertensive rats. Biomed Pharmacol. 2019; 111: 325-330. 87.Zhu DQ, Wang SS, Lawless J, He JC and Zheng Z. Dose dependent dual effect of baicalin and herb huang qin extract on angiogenesis. Plos One. 2016; 11(11): e0167125. 88.Cai Y, Ma WQ, Xiao YC, Wu B, Li XB, Liu FR, Qiu JH and Zhang GS. High doses of baicalin induces kidney injury and fibrosis through regulating TGF-β/smad signaling pathway. Toxicol Appl Pharmacol. 2017; 333: 1-9.
|