[1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669.
[2] Liu, Y., Xie, B., Zhang, Z., Zheng, Q., & Xu, Z. (2012). Mechanical properties of graphene papers. Journal of the Mechanics and Physics of Solids, 60(4), 591-605.
[3] Moreno‐Moreno, M., Castellanos‐Gomez, A., Rubio‐Bollinger, G., Gomez‐Herrero, J., & Agraït, N. (2009). Ultralong natural graphene nanoribbons and their electrical conductivity. Small, 5(8), 924-927.
[4] Huang, Z., Fisher, T., & Murthy, J. (2011). An atomistic study of thermal conductance across a metal-graphene nanoribbon interface. Journal of Applied Physics, 109(7), 074305.
[5] Duan, W. H., Gong, K., & Wang, Q. (2011). Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear. Carbon, 49(9), 3107-3112.
[6] Baughman, R. H., Eckhardt, H., & Kertesz, M. (1987). Structure‐property predictions for new planar forms of carbon: Layered phases containing sp 2 and sp atoms. The Journal of Chemical Physics, 87(11), 6687-6699.
[7] Perkgöz, N. K., & Sevik, C. (2014). Vibrational and thermodynamic properties of α-, β-, γ-, and 6, 6, 12-graphyne structures. Nanotechnology, 25(18), 185701.
[8] Zhu, C., Li, H., Zeng, X. C., Wang, E. G., & Meng, S. (2013). Quantized water transport: ideal desalination through graphyne-4 membrane. Scientific Reports, 3, 3163.
[9] Li, G., Li, Y., Liu, H., Guo, Y., Li, Y., & Zhu, D. (2010). Architecture of graphdiyne nanoscale films. Chemical Communications, 46(19), 3256-3258.
[10] Malko, D., Neiss, C., Vines, F., & Görling, A. (2012). Competition for graphene: graphynes with direction-dependent dirac cones. Physical Review Letters, 108(8), 086804.
[11] Bai, H., Zhu, Y., Qiao, W., & Huang, Y. (2011). Structures, stabilities and electronic properties of graphdiyne nanoribbons. RSC Advances, 1(5), 768-775.
[12] Barone, V., Hod, O., & Scuseria, G. E. (2006). Electronic structure and stability of semiconducting graphene nanoribbons. Nano Letters, 6(12), 2748-2754.
[13] Yang, Y., & Xu, X. (2012). Mechanical properties of graphyne and its family–A molecular dynamics investigation. Computational Materials Science, 61, 83-88.
[14] Narita, N., Nagai, S., Suzuki, S., & Nakao, K. (1998). Optimized geometries and electronic structures of graphyne and its family. Physical Review B, 58(16), 11009.
[15] Pei, Y. (2012). Mechanical properties of graphdiyne sheet. Physica B: Condensed Matter, 407(22), 4436-4439.
[16] Cranford, S. W., & Buehler, M. J. (2011). Mechanical properties of graphyne. Carbon, 49(13), 4111-4121.
[17] Mirnezhad, M., Ansari, R., Rouhi, H., Seifi, M., & Faghihnasiri, M. (2012). Mechanical properties of two-dimensional graphyne sheet under hydrogen adsorption. Solid State Communications, 152(20), 1885-1889.
[18] Peng, Q., Ji, W., & De, S. (2012). Mechanical properties of graphyne monolayers: a first-principles study. Physical Chemistry Chemical Physics, 14(38), 13385-13391.
[19] Cranford, S. W., Brommer, D. B., & Buehler, M. J. (2012). Extended graphynes: simple scaling laws for stiffness, strength and fracture. Nanoscale, 4(24), 7797-7809.
[20] Yue, Q., Chang, S., Kang, J., Qin, S., & Li, J. (2013). Mechanical and electronic properties of graphyne and its family under elastic strain: theoretical predictions. The Journal of Physical Chemistry C, 117(28), 14804-14811.
[21] Zhang, Y. Y., Pei, Q. X., & Wang, C. M. (2012). Mechanical properties of graphynes under tension: a molecular dynamics study. Applied Physics Letters, 101(8), 081909.
[22] Rodrigues, F. C., Silvestre, N., & Deus, A. M. (2017). Nonlinear mechanical behaviour of γ-graphyne through an atomistic finite element model. Computational Materials Science, 134, 171-183.
[23] Berber, S., Kwon, Y. K., & Tománek, D. (2000). Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters, 84(20), 4613.
[24] Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), 902-907.
[25] Hu, J., Ruan, X., & Chen, Y. P. (2009). Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Letters, 9(7), 2730-2735.
[26] . Guo, Z., Zhang, D., & Gong, X. G. (2009). Thermal conductivity of graphene nanoribbons. Applied Physics Letters, 95(16), 163103.
[27] Zhan, H., Zhang, Y., Bell, J. M., Mai, Y. W., & Gu, Y. (2014). Structure-mediated thermal transport of monolayer graphene allotropes nanoribbons. Carbon, 77, 416-423.
[28] Zhang, Y. Y., Pei, Q. X., & Wang, C. M. (2012). A molecular dynamics investigation on thermal conductivity of graphynes. Computational Materials Science, 65, 406-410.
[29] Ouyang, T., Chen, Y., Liu, L. M., Xie, Y., Wei, X., & Zhong, J. (2012). Thermal transport in graphyne nanoribbons. Physical Review B, 85(23), 235436.
[30] Zhong, J., Wang, J., Zhou, J. G., Mao, B. H., Liu, C. H., Liu, H. B., ... & Wang, S. D. (2013). Electronic structure of graphdiyne probed by X-ray absorption spectroscopy and scanning transmission X-ray microscopy. The Journal of Physical Chemistry C, 117(11), 5931-5936.
[31] Ohkita, M., Kawano, M., Suzuki, T., & Tsuji, T. (2002). Supramolecular graphyne: a C (sp)-H⋯ N hydrogen-bonded unique network structure of 2, 4, 6-triethynyl-1, 3, 5-triazine. Chemical Communications, (24), 3054-3055.
[32] Kang, B., Shi, H., Wang, F. F., & Lee, J. Y. (2016). Importance of doping site of B, N, and O in tuning electronic structure of graphynes. Carbon, 105, 156-1
[33] Lin, S., & Buehler, M. J. (2013). Mechanics and molecular filtration performance of graphyne nanoweb membranes for selective water purification. Nanoscale, 5(23), 11801-11807.
[34] Jiao, Y., Du, A., Hankel, M., & Smith, S. C. (2013). Modelling carbon membranes for gas and isotope separation. Physical Chemistry Chemical Physics, 15(14), 4832-4843.
[35] Zhang, H., He, X., Zhao, M., Zhang, M., Zhao, L., Feng, X., & Luo, Y. (2012). Tunable hydrogen separation in sp–sp2 hybridized carbon membranes: a first-principles prediction. The Journal of Physical Chemistry C, 116(31), 16634-16638.
[36] Cranford, S. W., & Buehler, M. J. (2012). Selective hydrogen purification through graphdiyne under ambient temperature and pressure. Nanoscale, 4(15), 4587-4593.
[37] Hwang, H. J., Kwon, Y., & Lee, H. (2012). Thermodynamically stable calcium-decorated graphyne as a hydrogen storage medium. The Journal of Physical Chemistry C, 116(38), 20220-20224.
[38] Li, C., Li, J., Wu, F., Li, S. S., Xia, J. B., & Wang, L. W. (2011). High capacity hydrogen storage in Ca decorated graphyne: a first-principles study. The Journal of Physical Chemistry C, 115(46), 23221-23225.
[39] Guo, Y., Jiang, K., Xu, B., Xia, Y., Yin, J., & Liu, Z. (2012). Remarkable hydrogen storage capacity in Li-decorated graphyne: theoretical predication. The Journal of Physical Chemistry C, 116(26), 13837-13841.
[40] Zhang, H., Zhao, M., He, X., Wang, Z., Zhang, X., & Liu, X. (2011). High mobility and high storage capacity of lithium in sp–sp2 hybridized carbon network: the case of graphyne. The Journal of Physical Chemistry C, 115(17), 8845-8850.
[41] Lu, R., Rao, D., Meng, Z., Zhang, X., Xu, G., Liu, Y., ... & Deng, K. (2013). Boron-substituted graphyne as a versatile material with high storage capacities of Li and H 2: a multiscale theoretical study. Physical Chemistry Chemical Physics, 15(38), 16120-16126.
[42] Zhang, H., Xia, Y., Bu, H., Wang, X., Zhang, M., Luo, Y., & Zhao, M. (2013). Graphdiyne: A promising anode material for lithium ion batteries with high capacity and rate capability. Journal of Applied Physics, 113(4), 044309.
[43] Wu, P., Du, P., Zhang, H., & Cai, C. (2012). Graphyne as a promising metal-free electrocatalyst for oxygen reduction reactions in acidic fuel cells: a DFT study. The Journal of Physical Chemistry C, 116(38), 20472-20479.
[44] Kirkwood, J. G. (1949). The statistical mechanical theory of irreversible processes in solutions of flexible macromolecules. Visco‐elastic behavior. Recueil des Travaux Chimiques des Pays‐Bas, 68(7), 649-660.
[45] Jones, J. E. (1924). On the determination of molecular fields.—I. From the variation of the viscosity of a gas with temperature. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 106(738), 441-462.
[46] Daw, M. S., & Baskes, M. I. (1984). Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 29(12), 6443.
[47] Tersoff, J. (1988). New empirical approach for the structure and energy of covalent systems. Physical Review B, 37(12), 6991.
[48] Stuart, S. J., Tutein, A. B., & Harrison, J. A. (2000). A reactive potential for hydrocarbons with intermolecular interactions. The Journal of Chemical Physics, 112(14), 6472-6486.
[49] Brenner, D. W. (1990). Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review B, 42(15), 9458.
[50] 李哲緯, “石墨烯量子點與碳複合結構之熱傳導與力學特性分析,” 國立高雄應用科技大學碩士論文, 2017[51] 宋柏賢 “鎳鈦形狀記憶合金之微奈米力學特性分析,” 國立高雄應用科技大學碩士論文, 2012[52] Rapaport, D. C., & Rapaport, D. C. R. (2004). The art of molecular dynamics simulation. Cambridge University Press.
[53] Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81(1), 511-519.
[54] Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 31(3), 1695.
[55] Haile, J. M., Johnston, I., Mallinckrodt, A. J., & McKay, S. (1993). Molecular dynamics simulation: elementary methods. Computers in Physics, 7(6), 625.
[56] Gear, C. W. (1971). Numerical initial value problems in ordinary differential equations. Prentice Hall PTR.
[57] Fincham, D., & Heyes, D. M. (1982). Integration algorithms in molecular dynamics. CCP5 Quarterly, 6, 4-10.
[58] Frenkel, D., Smit, B., Tobochnik, J., McKay, S. R., & Christian, W. (1997). Understanding molecular simulation. Computers in Physics, 11(4), 351-354.
[59] Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1), 1-19.
[60] Green, M. S. (1954). Markoff random processes and the statistical mechanics of time‐dependent phenomena. II. Irreversible processes in fluids. The Journal of Chemical Physics, 22(3), 398-413.
[61] Kubo, R. (1957). Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. Journal of the Physical Society of Japan, 12(6), 570-586.
[62] Müller-Plathe, F. (1997). A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. The Journal of Chemical Physics, 106(14), 6082-6085.
[63] Ikeshoji, T., & Hafskjold, B. (1994). Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface. Molecular Physics, 81(2), 251-261.
[64] Jund, P., & Jullien, R. (1999). Molecular-dynamics calculation of the thermal conductivity of vitreous silica. Physical Review B, 59(21), 13707.
[65] Narita, N., Nagai, S., Suzuki, S., & Nakao, K. (1998). Optimized geometries and electronic structures of graphyne and its family. Physical Review B, 58(16), 11009.
[66] Zhang, Y. Y., Pei, Q. X., & Wang, C. M. (2012). Mechanical properties of graphynes under tension: a molecular dynamics study. Applied Physics Letters, 101(8), 081909.
[67] Wu, B., Tang, X., Yin, J., Zhang, W., Jiang, Y., Zhang, P., & Ding, Y. (2017). Study on mechanical properties of graphyne nanostructures by molecular dynamics simulation. Materials Research Express, 4(2), 025603.
[68] Zhang, J., Cui, Y., & Wang, S. (2017). Lattice thermal conductivity of δ-graphyne—a molecular dynamics study. Physica E: Low-dimensional Systems and Nanostructures, 90, 116-122.
[69] Hu, J., Ruan, X., & Chen, Y. P. (2009). Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano letters, 9(7), 2730-2735.
[70] Evans, W. J., Hu, L., & Keblinski, P. (2010). Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination. Applied Physics Letters, 96(20), 203112.
[71] Ng, T. Y., Yeo, J., & Liu, Z. (2013). Molecular dynamics simulation of the thermal conductivity of shorts strips of graphene and silicene: a comparative study. International Journal of Mechanics and Materials in Design, 9(2), 105-114.
[72] Nika, D. L., Pokatilov, E. P., Askerov, A. S., & Balandin, A. A. (2009). Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Physical Review B, 79(15), 155413.
[73] Guo, Z., Zhang, D., & Gong, X. G. (2009). Thermal conductivity of graphene nanoribbons. Applied Physics Letters, 95(16), 163103.
[74] Plachinda, P., Evans, D., & Solanki, R. (2012). Thermal conductivity of graphene nanoribbons: effect of the edges and ribbon width. Journal of Heat Transfer, 134(12), 122401.
[75] Huang, L. Y., Han, Q., & Liang, Y. J. (2012). Calibration of nonlocal scale effect parameter for bending single-layered graphene sheet under molecular dynamics. Nano, 7(05), 1250033.
[76] Ng, T. Y., Yeo, J. J., & Liu, Z. S. (2012). A molecular dynamics study of the thermal conductivity of graphene nanoribbons containing dispersed Stone–Thrower–Wales defects. Carbon, 50(13), 4887-4893.
[77] 王貫宇, “分子動力學研究碲化鉍薄膜之熱傳導與機械特性,” 國立高雄應用科技大學碩士論文, 2017