|
[1]D. L.Pham, C.Xu, & J. L.Prince, (2000). Current methods in medical image segmentation. Annual review of biomedical engineering, 2(1), 315-337. [2]P.Xiuqin, Q.Zhang, H.Zhang, & S.Li, (2019). A fundus retinal vessels segmentation scheme based on the improved deep learning U-Net model. IEEE Access, 7, 122634-122643. [3]D.Huang, E. A.Swanson, C. P.Lin, J. S. Schuman, W. G.Stinson, W.Chang,... & J. G.Fujimoto, (1991). Optical coherence tomography. science, 254(5035), 1178-1181. [4]H.Zhang, K.Dana, J.Shi, Z.Zhang, X.Wang, A.Tyagi, & A.Agrawal, (2018). Context encoding for semantic segmentation. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (pp. 7151-7160). [5]R.Shetty, B.Schiele, & M. Fritz, (2019). Not Using the Car to See the Sidewalk--Quantifying and Controlling the Effects of Context in Classification and Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8218-8226). [6]Y.LeCun, L.Bottou, Y.Bengio, & P.Haffner, (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. [7]K.,He, Zhang, S.X.Ren, & J.Sun, (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). [8]J.Long, E.Shelhamer, T. & Darrell, (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431-3440). [9]O.Ronneberger, P.Fischer, & T.Brox, (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham. [10]D.Jha, P. H.Smedsrud, M. A.Riegler, D.Johansen, T.De Lange, P.Halvorsen, & H. D.Johansen, (2019, December). Resunet++: An advanced architecture for medical image segmentation. In 2019 IEEE International Symposium on Multimedia (ISM) (pp. 225-2255). IEEE. [11]H.Huang, L.Lin, R.Tong, H. Hu, Q.Zhang, Y.Iwamoto, ... & J.Wu (2020, May). Unet 3+: A full-scale connected unet for medical image segmentation. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1055-1059). IEEE. [12]J. Staal, M. D. Abramoff, and M. Niemeijer, ‘‘Ridge-based vessel segmentation in color images of the retina,’’ IEEE Trans. Med. Imag., vol. 23, no. 4,pp. 501–509, Aug. 2004. [13]Y.Ma, ,H.Hao, J. Xie, H. Fu, J. Zhang, J.Yang, ... & Y. Zhao, (2020). ROSE: a retinal OCT-angiography vessel segmentation dataset and new model. IEEE transactions on medical imaging, 40(3), 928-939. [14]M.Li, Y.Zhang, Z.Ji, K. Xie, S.Yuan, Q.Liu, & Q. Chen, (2020). Ipn-v2 and octa-500: Methodology and dataset for retinal image segmentation. arXiv preprint arXiv:2012.07261. [15]C.Tomasi, & R. Manduchi, (1998, January). Bilateral filtering for gray and color images. In Sixth international conference on computer vision (IEEE Cat. No. 98CH36271) (pp. 839-846). IEEE. [16]A. M. Reza, (2004). Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. Journal of VLSI signal processing systems for signal, image and video technology, 38(1), 35-44. [17]S.Rahman, M. M. Rahman, M.Abdullah-Al-Wadud, G. D.Al-Quaderi, & M. Shoyaib, (2016). An adaptive gamma correction for image enhancement. EURASIP Journal on Image and Video Processing, 2016(1), 1-13. [18]C.Shorten, & T. M.Khoshgoftaar, (2019). A survey on image data augmentation for deep learning. Journal of big data, 6(1), 1-48. [19]C.Nwankpa, W.Ijomah, A.Gachagan, & S. Marshall, (2018). Activation functions: Comparison of trends in practice and research for deep learning. arXiv preprint arXiv:1811.03378. [20]A.F.Agarap(2018). Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375.. [21]A.Krizhevsky, I.Sutskever, & G. E.Hinton, (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25. [22]C.Szegedy, W.Liu,Y. Jia, P.Sermanet, S.Reed, D.Anguelov, ... & A. Rabinovich, (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9). [23]X.Li, H.Chen, X.Qi, Q.Dou, C.W.Fu, & P. A. Heng, (2018). H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE transactions on medical imaging, 37(12), 2663-2674. [24]Y.Weng, T.Zhou, Y. Li, & X.Qiu, (2019). Nas-unet: Neural architecture search for medical image segmentation. IEEE Access, 7, 44247-44257. [25]Z.Zeng, W. Xie, , Y.Zhang, , & Y. Lu, (2019). RIC-Unet: An improved neural network based on Unet for nuclei segmentation in histology images. Ieee Access, 7, 21420-21428. [26]K.Naveed, F.Abdullah, H. A.Madni, M. A. Khan, T. M.Khan, ,& S. S.Naqvi, (2021). Towards automated eye diagnosis: an improved retinal vessel segmentation framework using ensemble block matching 3D filter. Diagnostics, 11(1), 114. [27]K.Naveed, F.Abdullah, H. A.Madni, M. A.Khan, T. M. Khan, & S. S.Naqvi, (2021). Towards automated eye diagnosis: an improved retinal vessel segmentation framework using ensemble block matching 3D filter. Diagnostics, 11(1), 114. [28]M.Chala, B. Nsiri, M. H.El yousfi Alaoui, A.Soulaymani, A. Mokhtari, & B.Benaji, (2021). An automatic retinal vessel segmentation approach based on Convolutional Neural Networks. Expert Systems with Applications, 184, 115459. [29]M. R. K.Mookiah, S.Hogg, T.MacGillivray, & E. Trucco, (2021). On the quantitative effects of compression of retinal fundus images on morphometric vascular measurements in VAMPIRE. Computer Methods and Programs in Biomedicine, 202, 105969. [30]K.Balasubramanian, & N. P.Ananthamoorthy, (2021). Robust retinal blood vessel segmentation using convolutional neural network and support vector machine. Journal of Ambient Intelligence and Humanized Computing, 12(3), 3559-3569. [31]S. M.Boubakar Khalifa Albargathe, E.Kamberli, F.Kandemirli, & J. Rahebi, (2021). Blood vessel segmentation and extraction using H-minima method based on image processing techniques. Multimedia Tools and Applications, 80(2), 2565-2582. [32]K.Mardani, & K.Maghooli, (2021). Enhancing retinal blood vessel segmentation in medical images using combined segmentation modes extracted by DBSCAN and morphological reconstruction. Biomedical Signal Processing and Control, 69, 102837. [33]U.Dikkala, M. K.Joseph, & M.Alagirisamy, (2021, February). A comprehensive analysis of morphological process dependent retinal blood vessel segmentation. In 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS) (pp. 510-516). IEEE. [34]C. Y.Cheung, D.Xu, C. Y.Cheng, C.Sabanayagam, Y. C.Tham, M.Yu, ... & T. Y. Wong, (2021). A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre. Nature biomedical engineering, 5(6), 498-508. [35]Y.Zhou, H.Yu, & H.Shi, (2021, September). Study group learning: Improving retinal vessel segmentation trained with noisy labels. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 57-67). Springer, Cham. [36]O.Ramos-Soto, E.Rodríguez-Esparza, S. E. Balderas-Mata, D.Oliva, A. E.Hassanien, R. K.Meleppat, & R. J.Zawadzki, (2021). An efficient retinal blood vessel segmentation in eye fundus images by using optimized top-hat and homomorphic filtering. Computer Methods and Programs in Biomedicine, 201, 105949. [37]B.Toptaş, & D. Hanbay, (2021). Retinal blood vessel segmentation using pixel-based feature vector. Biomedical Signal Processing and Control, 70, 103053 [38]A. A.Abdulsahib, M. A. Mahmoud, M. A.Mohammed, H. H.Rasheed, S. A.Mostafa, & M. S. Maashi, (2021). Comprehensive review of retinal blood vessel segmentation and classification techniques: intelligent solutions for green computing in medical images, current challenges, open issues, and knowledge gaps in fundus medical images. Network Modeling Analysis in Health Informatics and Bioinformatics, 10(1), 1-32.. [39]N. A.El‐Hag, A.Sedik, W.El‐Shafai, H. M.El‐Hoseny, A. A.Khalaf, A. S.El‐Fishawy, ... & G. M.El‐Banby, (2021). Classification of retinal images based on convolutional neural network. Microscopy Research and Technique, 84(3), 394-414. [40]M.Yeung, E. Sala, C. B.Schönlieb, & L.Rundo, (2022). Unified focal loss: Generalising dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Computerized Medical Imaging and Graphics, 95, 102026. [41]M.Yeung, E.Sala, C. B.Schönlieb, & L.Rundo, (2021). Focus U-Net: A novel dual attention-gated CNN for polyp segmentation during colonoscopy. Computers in Biology and Medicine, 137, 104815. [42]M. S.Moustafa, S. A.Mohamed, S. Ahmed, & A. H.Nasr, (2021). Hyperspectral change detection based on modification of UNet neural networks. Journal of Applied Remote Sensing, 15(2), 028505. [43]M. S.Moustafa, S. A.Mohamed, S.Ahmed, & A. H.Nasr, (2021). Hyperspectral change detection based on modification of UNet neural networks. Journal of Applied Remote Sensing, 15(2), 028505. [44]T.Sugino, T.Kawase, S.Onogi, T.Kin, N.Saito, & Y.Nakajima, (2021, August). Loss weightings for improving imbalanced brain structure segmentation using fully convolutional networks. In Healthcare (Vol. 9, No. 8, p. 938). Multidisciplinary Digital Publishing Institute. [45]Z.Wu, ,C.Shen, & A.Van Den Hengel, (2019). Wider or deeper: Revisiting the resnet model for visual recognition. Pattern Recognition, 90, 119-133. [46]C.Szegedy, S.Ioffe, V.Vanhoucke, & A. A. Alemi, (2017, February). Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI conference on artificial intelligence. [47]H.Lin, & S. Jegelka, (2018). Resnet with one-neuron hidden layers is a universal approximator. Advances in neural information processing systems, 31. [48]M.Farooq, & A.Hafeez, (2020). Covid-resnet: A deep learning framework for screening of covid19 from radiographs. arXiv preprint arXiv:2003.14395. [49]Z.Chen, Z.Xie, W.Zhang, & X.Xu, (2017, August). ResNet and Model Fusion for Automatic Spoofing Detection. In Interspeech (pp. 102-106). [50]L.Wen, X. Li, & L. Gao, (2020). A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neu ral Computing and Applications, 32(10), 6111-6124. [51]V.Badrinarayanan, A.Kendall, & R.Cipolla, (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(12), 2481-2495. [52]A.Kendall, V.Badrinarayanan, & R.Cipolla, (2015). Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680. [53]S.Almotairi, G.Kareem, M.Aouf, B.Almutairi, & M. A. M.Salem, (2020). Liver tumor segmentation in CT scans using modified SegNet. Sensors, 20(5), 1516. [54]A.Saood, & I.Hatem, (2021). COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet. BMC Medical Imaging, 21(1), 1-10. [55]J.Dai, Y.Li, K.He, & J.Sun, (2016). R-fcn: Object detection via region-based fully convolutional networks. Advances in neural information processing systems, 29. [56]P.Siano, C. Cecati, H.Yu, & J.Kolbusz, (2012). Real time operation of smart grids via FCN networks and optimal power flow. IEEE Transactions on Industrial Informatics, 8(4), 944-952. [57]J.Ashburner, & K. J.Friston, (2005). Unified segmentation. Neuroimage, 26(3), 839-851. [58]J.Ma, J.Chen, M.Ng, R. Huang, Y.Li, C.Li, ... & A. L.Martel, (2021). Loss odyssey in medical image segmentation. Medical Image Analysis, 71, 102035. [59]R.Strudel, R. Garcia, I.Laptev, & C.Schmid, (2021). Segmenter: Transformer for semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 7262-7272). [60]S.Akbar, M.Sharif, M. U. Akram, T.Saba, T.Mahmood, & M.Kolivand, (2019). Automated techniques for blood vessels segmentation through fundus retinal images: A review. Microscopy research and technique, 82(2), 153-170. [61]R. C.Gonzales, & R. E.Woods, (2018). Digital image processing 4th edition. [62]C.Szegedy, S.Ioffe, V.Vanhoucke, & A. A.Alemi, (2017, February). Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI conference on artificial intelligence.
|