|
[1]Choi, M.K., J. Yang, T. Hyeon, and D.-H. Kim, "Flexible quantum dot light-emitting diodes for next-generation displays", NPJ Flexible Electronics, 2, 10, 2018. [2]Eden, J., "Information display early in the 21st century: Overview of selected emissive display technologies", Proceedings of the IEEE, 94, 567-574, 2006. [3]Hollands, J., H. Parker, S. McFadden, and R. Boothby, "LCD versus CRT displays: a comparison of visual search performance for colored symbols", Human factors, 44, 210-221, 2002. [4]Anandan, M., "Progress of LED backlights for LCDs", J. Society for Information Display, 16, 287-310, 2008. [5]Bagher, A.M., M.M.A. Vahid, and M. Mohsen, "A review of challenges in display technology", Int. J. Electr. Compon. Energy Convers, 3, 26-39, 2017. [6]Lagroix, H.E., M.R. Yanko, and T.M. Spalek, "LCDs are better: Psychophysical and photometric estimates of the temporal characteristics of CRT and LCD monitors", Attention, Perception, & Psychophysics, 74, 1033-1041, 2012. [7]Zhao, M., Q. Zhang, and Z. Xia, "Narrow-band emitters in LED backlights for liquid-crystal displays", Mater. Today, 40, 246-265, 2020. [8]Zheludev, N., "The life and times of the LED—a 100-year history", Nature photonics, 1, 189-192, 2007. [9]Dupuis, R.D. and M.R. Krames, "History, development, and applications of high-brightness visible light-emitting diodes", J. lightwave technology, 26, 1154-1171, 2008. [10]Nuese, C.J., J. Tietjen, J. Gannon, and H. Gossenberger, "Optimization of Electroluminescent Efficiencies for Vapor‐Grown GaAs1− x P x Diodes", J. Electrochem. Soc., 116, 248, 1969. [11]Amano, H., M. Kito, K. Hiramatsu, and I. Akasaki, "P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)", Japanese j. applied physics, 28, L2112, 1989. [12]Nakamura, S., T.M.T. Mukai, and M.S.M. Senoh, "Si-doped InGaN films grown on GaN films", Japanese j. Appl. Phys., 32, L16, 1993. [13]Nakamura, S., M.S.M. Senoh, and T.M.T. Mukai, "P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes", Japanese J. Appl. Phys., 32, L8, 1993. [14]Fang, M.-H., Z. Bao, W.-T. Huang, and R.-S. Liu, "Evolutionary generation of phosphor materials and their progress in future applications for light-emitting diodes", Chem. Reviews, 122, 11474-11513, 2022. [15]郭浩中, 賴芳儀, 和郭守義, LED 原理與應用: Principles and applications of light-emitting diode. 2009: 五南圖書出版股份有限公司. [16]Ohno, Y., "Spectral design considerations for white LED color rendering", Optical Engineering, 44, 111302-111302-9, 2005. [17]Jang, H., Y.-H. Won, and D. Jeon, "Improvement of electroluminescent property of blue LED coated with highly luminescent yellow-emitting phosphors", Appl. Phys. B, 95, 715-720, 2009. [18]Park, J.K., C.H. Kim, S.H. Park, H.D. Park, and S.Y. Choi, "Application of strontium silicate yellow phosphor for white light-emitting diodes", Appl. Phys. Lett., 84, 1647-1649, 2004. [19]Kim, J.S., P.E. Jeon, Y.H. Park, J.C. Choi, H.L. Park, G.C. Kim, and T.W. Kim, "White-light generation through ultraviolet-emitting diode and white-emitting phosphor", Appl. Phys. Lett., 85, 3696-3698, 2004. [20]Muramoto, Y., M. Kimura, A. Dempo, S. Nouda, Y. Fukawa, and S. Sakai, "High‐efficiency UV LEDs and RGB white LEDs for lighting and LCD backlights", J. Society for Information Display, 19, 907-912, 2011. [21]Chen, B., D. Li, and F. Wang, "InP quantum dots: synthesis and lighting applications", Small, 16, 2002454, 2020. [22]Gayral, B., "LEDs for lighting: Basic physics and prospects for energy savings", Comp. Rendus Physique, 18, 453-461, 2017. [23]Karadza, B., H. Van Avermaet, L. Mingabudinova, Z. Hens, and Y. Meuret, "Comparison of different RGB InP-quantum-dot-on-chip LED configurations", Opt. Mater. Express, 30, 43522-43533, 2022. [24]Lee, S.-H., K.-H. Lee, J.-H. Jo, B. Park, Y. Kwon, H.S. Jang, and H. Yang, "Remote-type, high-color gamut white light-emitting diode based on InP quantum dot color converters", Opt. Mater. Express, 4, 1297-1302, 2014. [25]Reshma, V. and P. Mohanan, "Quantum dots: Applications and safety consequences", J. Lumin., 205, 287-298, 2019. [26]Ekimov, A.I., "Quantum size effect in three-dimensional microscopic semiconductor crystals", Jetp Lett., 34, 345, 1981. [27]Brus, L.E., "A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites", J. Chem. Phys., 79, 5566-5571, 1983. [28]Brus, L.E., "Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state", J. Chem. Phys., 80, 4403-4409, 1984. [29]Rossetti, R., J. Ellison, J. Gibson, and L.E. Brus, "Size effects in the excited electronic states of small colloidal CdS crystallites", J. Chem. Phys., 80, 4464-4469, 1984. [30]Hines, M.A. and P. Guyot-Sionnest, "Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals", J. Chem. Phys., 100, 468-471, 1996. [31]Adegoke, O., M.-W. Seo, T. Kato, S. Kawahito, and E.Y. Park, "Gradient band gap engineered alloyed quaternary/ternary CdZnSeS/ZnSeS quantum dots: an ultrasensitive fluorescence reporter in a conjugated molecular beacon system for the biosensing of influenza virus RNA", J. Mater. Chem. B, 4, 1489-1498, 2016. [32]Hien, N.T.T., L.X. Hung, P.T. Nga, and N.N. Dat, "Optical Properties of Ternary Alloyed CdSe _ 1-x 1-x Te _x x Quantum Dots", J. Electron. Mater., 50, 1275-1281, 2021. [33]Mahmoud, W.E. and S. Yaghmour, "Synthesis, characterization and luminescence properties of thiol-capped CdSe quantum dots at different processing conditions", Opt. Mater., 35, 652-656, 2013. [34]Sadeghi, S., S. Khabbaz Abkenar, C.W. Ow-Yang, and S. Nizamoglu, "Efficient white LEDs using liquid-state magic-sized CdSe quantum dots", Sci. Rep., 9, 10061, 2019. [35]Verma, S., R. Verma, N. Li, D. Xiong, S. Tian, W. Xiang, Z. Zhang, Y. Xie, and X. Zhao, "Fabrication and band engineering of Cu-doped CdSe0. 6Te0. 4-alloyed quantum dots for solar cells", Sol. Energy Mater. and Sol. Cells, 157, 161-170, 2016. [36]Wageh, S., A. Al-Ghamdi, A. Jilani, and J. Iqbal, "Facile Synthesis of Ternary Alloy of CdSe1-x S x Quantum Dots with Tunable Absorption and Emission of Visible Light", Nanomaterials, 8, 979, 2018. [37]Shirasaki, Y., G.J. Supran, M.G. Bawendi, and V. Bulović, "Emergence of colloidal quantum-dot light-emitting technologies", Nat. photonics, 7, 13-23, 2013. [38]Singh, G., "Recent advances on cadmium free quantum dots-liquid crystal nanocomposites", Appl. Mater. Today, 21, 100840, 2020. [39]Soh, J.-J., D.-S. Shim, K.-S. Kim, and W.-B. Byun. Technical trend of Restriction of Hazardous Substances Directive (RoHS). in Proceedings of the KIEE Conference. 2009. The Korean Institute of Electrical Engineers. [40]Bai, Y., M. Hao, S. Ding, P. Chen, and L. Wang, "Surface chemistry engineering of perovskite quantum dots: strategies, applications, and perspectives", Adv. Mater., 34, 2105958, 2022. [41]Liu, S. and X. Su, "The synthesis and application of I–III–VI type quantum dots", RSC Adv., 4, 43415-43428, 2014. [42]Nozik, A.J. and O.I. Mićić, "Colloidal quantum dots of III-V semiconductors", MRs Bull., 23, 24-30, 1998. [43]Kumar, D.S., B.J. Kumar, and H. Mahesh, "Quantum nanostructures (QDs): an overview", Synthesis of inorganic nanomaterials, 59-88, 2018. [44]Ramalingam, G., P. Kathirgamanathan, G. Ravi, T. Elangovan, N. Manivannan, and K. Kasinathan, Quantum confinement effect of 2D nanomaterials, in Quantum Dots-Fundamental and Applications. 2020, IntechOpen. [45]Wood, V. and V. Bulović, "Colloidal quantum dot light-emitting devices", Nano rev., 1, 5202, 2010. [46]Aqua, J.-N. and T. Frisch, "Influence of surface energy anisotropy on the dynamics of quantum dot growth", Phys. Rev. B, 82, 085322, 2010. [47]Mohamed, E.-K.H., X. Ling, C. Kun-Ji, M. Yi, Z. Yu, L. Ming-Hai, and H. Xin-Fan, "Improved luminescence properties and thermal stability of ZnS quantum dots by organic and inorganic passivation", Chinese phys. Lett., 19, 967, 2002. [48]Cros-Gagneux, A., F. Delpech, C. Nayral, A. Cornejo, Y. Coppel, and B. Chaudret, "Surface chemistry of InP quantum dots: a comprehensive study", J. Am. Chem. Soc., 132, 18147-18157, 2010. [49]Ji, X., D. Copenhaver, C. Sichmeller, and X. Peng, "Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals", J. Am. Chem. Soc., 130, 5726-5735, 2008. [50]Lin, Z., H. Lin, J. Xu, F. Huang, H. Chen, B. Wang, and Y. Wang, "Highly thermal-stable warm w-LED based on Ce: YAG PiG stacked with a red phosphor layer", J. Alloys Compd., 649, 661-665, 2015. [51]Radkov, E., R. Bompiedi, A.M. Srivastava, A.A. Setlur, and C.A. Becker. White light with UV LEDs. in Third International Conference on Solid State Lighting. 2004. SPIE. [52]Saradhi, M.P. and U. Varadaraju, "Photoluminescence studies on Eu2+-activated Li2SrSiO4 a potential orange-yellow phosphor for solid-state lighting", Chem. Mater., 18, 5267-5272, 2006. [53]Wuister, S.F., C. de Mello Donega, and A. Meijerink, "Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots", J. Phys. Chem. B, 108, 17393-17397, 2004. [54]Lim, J., W.K. Bae, J. Kwak, S. Lee, C. Lee, and K. Char, "Perspective on synthesis, device structures, and printing processes for quantum dot displays", Opt. Mater. Express, 2, 594-628, 2012. [55]Reiss, P., M. Protiere, and L. Li, "Core/shell semiconductor nanocrystals", Small, 5, 154-168, 2009. [56]Li, J.J., Y.A. Wang, W. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, and X. Peng, "Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction", J. Am. Chem. Soc., 125, 12567-12575, 2003. [57]Pan, D., Q. Wang, S. Jiang, X. Ji, and L. An, "Synthesis of extremely small CdSe and highly luminescent CdSe/CdS Core–shell nanocrystals via a Novel two‐phase thermal approach", Adv. Mater., 17, 176-179, 2005. [58]Peng, X., M.C. Schlamp, A.V. Kadavanich, and A.P. Alivisatos, "Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility", J. Am. Chem. Soc., 119, 7019-7029, 1997. [59]He, H., Applications in OLED and QLED, in Solution Processed Metal Oxide Thin Films for Electronic Applications. 2020, Elsevier. ,141-154, 2020. [60]Richman, D., "Color-carrier reference phase synchronization accuracy in NTSC color television", Proceedings of the IRE, 42, 106-133, 1954. [61]Wang, H.C., S.Y. Lin, A.C. Tang, B.P. Singh, H.C. Tong, C.Y. Chen, Y.C. Lee, T.L. Tsai, and R.S. Liu, "Mesoporous silica particles integrated with all‐inorganic CsPbBr3 perovskite quantum‐dot nanocomposites (MP‐PQDs) with high stability and wide color gamut used for backlight display", Angew. Chem. Int. Ed. Engl., 55, 7924-7929, 2016. [62]Micic, O.I., C.J. Curtis, K.M. Jones, J.R. Sprague, and A.J. Nozik, "Synthesis and characterization of InP quantum dots", J. Phys. Chem., 98, 4966-4969, 1994. [63]Battaglia, D. and X. Peng, "Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent", Nano Lett., 2, 1027-1030, 2002. [64]Lucey, D.W., D.J. MacRae, M. Furis, Y. Sahoo, A.N. Cartwright, and P.N. Prasad, "Monodispersed InP quantum dots prepared by colloidal chemistry in a noncoordinating solvent", Chem. Mater., 17, 3754-3762, 2005. [65]Xie, R., D. Battaglia, and X. Peng, "Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared", J. Am. Chem. Soc., 129, 15432-15433, 2007. [66]Tamang, S., C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, "Chemistry of InP nanocrystal syntheses", Chem. Mater., 28, 2491-2506, 2016. [67]Dunne, P.W., A.S. Munn, C.L. Starkey, T.A. Huddle, and E.H. Lester, "Continuous-flow hydrothermal synthesis for the production of inorganic nanomaterials", Philos. Trans. Royal Soc. A : Mathematical, Physical and Engineering Sciences, 373, 20150015, 2015. [68]Kirakosyan, A., J. Kim, S.W. Lee, I. Swathi, S.-G. Yoon, and J. Choi, "Optical properties of colloidal CH3NH3PbBr3 nanocrystals by controlled growth of lateral dimension", Cryst. Growth Des., 17, 794-799, 2017. [69]Ramasamy, P., K.-J. Ko, J.-W. Kang, and J.-S. Lee, "Two-step “seed-mediated” synthetic approach to colloidal indium phosphide quantum dots with high-purity photo-and electroluminescence", Chem. Mater., 30, 3643-3647, 2018. [70]Lai, R., C. Pu, and X. Peng, "On-surface reactions in the growth of high-quality CdSe nanocrystals in nonpolar solutions", J. Am. Chem. Soc., 140, 9174-9183, 2018. [71]Cossairt, B.M., "Shining light on indium phosphide quantum dots: understanding the interplay among precursor conversion, nucleation, and growth", Chem. Mater., 28, 7181-7189, 2016. [72]Peng, X., J. Wickham, and A. Alivisatos, "Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth:“focusing” of size distributions", J. Am. Chem. Soc., 120, 5343-5344, 1998. [73]Park, J., J. Joo, S.G. Kwon, Y. Jang, and T. Hyeon, "Synthesis of monodisperse spherical nanocrystals", Angew. Chem. Int. Ed. Engl., 46, 4630-4660, 2007. [74]Murray, C., D.J. Norris, and M.G. Bawendi, "Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites", J. Am. Chem. Soc., 115, 8706-8715, 1993. [75]McMurtry, B.M., K. Qian, J.K. Teglasi, A.K. Swarnakar, J. De Roo, and J.S. Owen, "Continuous nucleation and size dependent growth kinetics of indium phosphide nanocrystals", Chem. Mater., 32, 4358-4368, 2020. [76]Valleix, R., F. Cisnetti, H. Okuno, P. Boutinaud, G. Chadeyron, and D. Boyer, "Size-Controlled Indium Phosphide Quantum Dots for Bright and Tunable Light Emission by Simple Hindered Diamine Addition", ACS Appl. Nano Mater., 4, 11105-11114, 2021. [77]Larson, H. and B.M. Cossairt, "Indium–Poly (carboxylic acid) Ligand Interactions Modify InP Quantum Dot Nucleation and Growth", Chem. Mater., 35, 6152-6160, 2023. [78]Heath, J.R., "Covalency in semiconductor quantum dots", Chem. Soc. Rev., 27, 65-71, 1998. [79]Thuy, U.T.D., P. Reiss, and N.Q. Liem, "Luminescence properties of In (Zn) P alloy core/ZnS shell quantum dots", Appl. Phys. Lett., 97, 2010. [80]Pietra, F., L. De Trizio, A.W. Hoekstra, N. Renaud, M. Prato, F.C. Grozema, P.J. Baesjou, R. Koole, L. Manna, and A.J. Houtepen, "Tuning the lattice parameter of In X Zn Y P for highly luminescent lattice-matched core/shell quantum dots", Acs Nano, 10, 4754-4762, 2016. [81]Park, J.P., J.-J. Lee, and S.-W. Kim, "Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process", Sci. Rep., 6, 30094, 2016. [82]Xu, S., J. Ziegler, and T. Nann, "Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals", J. Mater. Chem., 18, 2653-2656, 2008. [83]Yang, X., D. Zhao, K.S. Leck, S.T. Tan, Y.X. Tang, J. Zhao, H.V. Demir, and X.W. Sun, "Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light‐emitting Diodes", Adv. Mater., 24, 4180-4185, 2012. [84]Koh, S., T. Eom, W.D. Kim, K. Lee, D. Lee, Y.K. Lee, H. Kim, W.K. Bae, and D.C. Lee, "Zinc–phosphorus complex working as an atomic valve for colloidal growth of monodisperse indium phosphide quantum dots", Chem. Mater., 29, 6346-6355, 2017. [85]Laufersky, G., S. Bradley, E. Frécaut, M. Lein, and T. Nann, "Unraveling aminophosphine redox mechanisms for glovebox-free InP quantum dot syntheses", Nanoscale, 10, 8752-8762, 2018. [86]McVey, B., R. Swain, D. Lagarde, Y. Tison, H. Martinez, B. Chaudret, C. Nayral, and F. Delpech, "Unraveling the role of zinc complexes on indium phosphide nanocrystal chemistry", J. Chem. Phys., 151, 2019. [87]Friedfeld, M.R., J.L. Stein, D.A. Johnson, N. Park, N.A. Henry, M.J. Enright, D. Mocatta, and B.M. Cossairt, "Effects of Zn2+ and Ga3+ doping on the quantum yield of cluster-derived InP quantum dots", J. Chem. Phys., 151, 2019. [88]梁凱玲、蘇育央. 無鎘量子點材料合成與應用. 366期,100,2017。 Available from: https://www.materialsnet.com.tw/DocView.aspx?id=25178. [89]Mulder, J.T., N. Kirkwood, L. De Trizio, C. Li, S. Bals, L. Manna, and A.J. Houtepen, "Developing lattice matched ZnMgSe shells on InZnP quantum dots for phosphor applications", ACS Appl. nano Mater., 3, 3859-3867, 2020. [90]Makkar, M. and R. Viswanatha, "Frontier challenges in doping quantum dots: synthesis and characterization", RSC Adv, 8, 22103-22112, 2018. [91]Guria, A.K. and N. Pradhan, "Doped or not doped: ionic impurities for influencing the phase and growth of semiconductor nanocrystals", Chem. Mater, 28, 5224-5237, 2016. [92]Beaulac, R., P.I. Archer, J. van Rijssel, A. Meijerink, and D.R. Gamelin, "Exciton storage by Mn2+ in colloidal Mn2+-doped CdSe quantum dots", Nano lett., 8, 2949-2953, 2008. [93]Murase, N., R. Jagannathan, Y. Kanematsu, M. Watanabe, A. Kurita, K. Hirata, T. Yazawa, and T. Kushida, "Fluorescence and EPR characteristics of Mn2+-doped ZnS nanocrystals prepared by aqueous colloidal method", J. Phys. Chem. B, 103, 754-760, 1999. [94]Yang, H., S. Santra, and P.H. Holloway, "Syntheses and applications of Mn-doped II-VI semiconductor nanocrystals", J. Nanosci. Nanotechnol., 5, 1364-1375, 2005. [95]Karan, N.S., D. Sarma, R. Kadam, and N. Pradhan, "Doping transition metal (Mn or Cu) ions in semiconductor nanocrystals", J. Phys. Chem. Lett., 1, 2863-2866, 2010. [96]Azizi, S.N., M.J. Chaichi, P. Shakeri, and A. Bekhradnia, "Determination of atropine using Mn-doped ZnS quantum dots as novel luminescent sensitizers", J. Lumin., 144, 34-40, 2013. [97]Pradhan, N., D. Goorskey, J. Thessing, and X. Peng, "An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals", J. Am. Chem. Soc., 127, 17586-17587, 2005. [98]Saha, A., A. Shetty, A. Pavan, S. Chattopadhyay, T. Shibata, and R. Viswanatha, "Uniform doping in quantum-dots-based dilute magnetic semiconductor", J. Phys. Chem. Lett., 7, 2420-2428, 2016. [99]Stein, J.L., E.A. Mader, and B.M. Cossairt, "Luminescent InP quantum dots with tunable emission by post-synthetic modification with Lewis acids", J. Phys. Chem. Lett., 7, 1315-1320, 2016. [100]Farvid, S.S. and P.V. Radovanovic, "Phase transformation of colloidal In2O3 nanocrystals driven by the interface nucleation mechanism: a kinetic study", J. Am. Chem. Soc., 134, 7015-7024, 2012. [101]Farvid, S.S., T. Wang, and P.V. Radovanovic, "Colloidal gallium indium oxide nanocrystals: a multifunctional light-emitting phosphor broadly tunable by alloy composition", J. Am. Chem. Soc., 133, 6711-6719, 2011. [102]Seo, W.S., H.H. Jo, K. Lee, and J.T. Park, "Preparation and Optical Properties of Highly Crystalline, Colloidal, and Size‐Controlled Indium Oxide Nanoparticles", Adv. Mater., 15, 795-797, 2003. [103]Nightingale, A.M. and J.C. deMello, "Improving the ensemble optical properties of InP quantum dots by indium precursor modification", J. Mater. Chem. C, 4, 8454-8458, 2016. [104]Li, M., X. Zhang, Y. Du, and P. Yang, "Colloidal CsPbX3 (X= Br, I, Cl) NCs: morphology controlling, composition evolution, and photoluminescence shift", J. Lumin., 190, 397-402, 2017. [105]Yang, W., G. He, S. Mei, J. Zhu, W. Zhang, Q. Chen, G. Zhang, and R. Guo, "Controllable synthesis of dual emissive Ag: InP/ZnS quantum dots with high fluorescence quantum yield", Appl. Surf. Sci., 423, 686-694, 2017. [106]Zhang, G., S. Mei, X. Wei, C. Wei, W. Yang, J. Zhu, W. Zhang, and R. Guo, "Dual-emissive and color-tunable Mn-doped InP/ZnS quantum dots via a growth-doping method", Nanoscale Res. Lett., 13, 1-7, 2018. [107]Kretov, M., I. Iskandarova, B. Potapkin, A. Scherbinin, A. Srivastava, and N. Stepanov, "Simulation of structured 4T1→ 6A1 emission bands of Mn2+ impurity in Zn2SiO4: A first-principle methodology", J. Lumin., 132, 2143-2150, 2012. [108]Wu, H., J. Qiu, J. Wang, Y. Wen, Q. Wang, Z. Long, D. Zhou, Y. Yang, and D. Wang, "The dual-defect passivation role of lithium bromide doping in reducing the nonradiative loss in CsPbX 3 (X= Br and I) quantum dots", Inorg. Chem. Front., 8, 658-668, 2021. [109]Hu, L., T. Xu, H. Zhu, C. Ma, and G. Chen, "Luminescence change of CdS and CdSe quantum dots on a Ag film", ACS omega, 4, 14193-14201, 2019. [110]Qu, L. and X. Peng, "Control of photoluminescence properties of CdSe nanocrystals in growth", J. Am. Chem. Soc., 124, 2049-2055, 2002.
|