|
[1] Werbos, P. J. (1974). Beyond regression: New tools for prediction and analysis in the behavioral sciences. (Doctoral dissertation). Harvard University. [2] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. [3] Graves, A., Mohamed, A. R., & Hinton, G. (2013). Speech recognition with deep recurrent neural networks. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6645-6649). [4] Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. [5] Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11, 3371-3408. [6] Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems (pp. 3104-3112). [7] Zhou, P., Qi, Z., Zheng, S., Xu, J., Bao, H., & Xu, B. (2016, November 21). Text Classification Improved by Integrating Bidirectional LSTM with Two-Dimensional Max Pooling. ArXiv. Retrieved from https://arxiv.org/abs/1611.06639 [8] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. [9] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (pp. 1097-1105). [10] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-9). [11] Kim, Y. (2014). Convolutional neural networks for sentence classification. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (pp. 1746-1751). [12] Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder-decoder approaches. In Proceedings of the Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation (pp. 103-111). [13] Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural network for modelling sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (pp. 655-665). [14] Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level Convolutional Networks for Text Classification. In Advances in Neural Information Processing Systems (NeurIPS) (pp. 649-657). [15] Zeng, D., Liu, K., Lai, S., Zhou, G., & Zhao, J. (2015). Relation classification via convolutional deep neural network. In Proceedings of the 25th International Conference on Computational Linguistics (pp. 2335-2344). [16] Ma, X., & Hovy, E. (2016). End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (pp. 1064-1074). [17] https://finance.yahoo.com/quote/MGLU3.SA?p=MGLU3.SA
|