|
[1] D. F. Williams and M. Schadt, “A simple organic electroluminescent diode,” Proceedings of the IEEE, vol. 58, no. 3, pp. 476–476, 1970. https://doi.org/10.1109/proc.1970.7655 [2] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Applied Physics Letters, vol. 51, no. 12, pp. 913–915, Sep. 1987, https://doi.org/10.1063/1.98799 [3] Hong, G., Gan, X., Leonhardt, C., Zhang, Z., Seibert, J., Busch, J. M., & Bräse, S. “A Brief History of OLEDs—Emitter Development and Industry Milestones,” Advanced Materials, vol. 33, no. 9, p. 2005630, Jan. 2021,https://doi.org/10.1002/adma.202005630 [4] Stefan Nowy (2010) “ Understanding losses in OLEDs: optical device simulation and electrical characterization using impedance spectroscopy,”Doctoral Thesis, University of Augsburg, https://opus.bibliothek.uni-augsburg.de/opus4/1522 [5] Mitsuhiro Koden “History of OLEDs,” OLED Displays and Lighting, pp. 1–11, Jan. 2017, https://doi.org/10.1002/9781119040477.ch1 [6] Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P. L., & Holmes, A. B. Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, no. 6293, pp. 539–541, Oct. 1990, a. https://doi.org/10.1038/347539a0 [7]J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, “White light‐emitting organic electroluminescent devices using the poly(N‐vinylcarbazole) emitter layer doped with three fluorescent dyes,” Applied Physics Letters, vol. 64, no. 7, pp. 815–817, Feb. 1994, https://doi.org/10.1063/1.111023 [8] Baldo, M. A., O’Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E., & Forrest, S. R “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature, vol. 395, no. 6698, pp. 151–154, Sep. 1998, https://doi.org/10.1038/25954 [9] https://www.sony.jp/CorporateCruise/Press/200710/07-1001/ [10] https://oledlightinguk.wordpress.com/2013/01/13/oled-technology-courtesy-of-www-acuitybrandsoled-com/ [11] A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, and C. Adachi, “Thermally Activated Delayed Fluorescence from Sn4+-Porphyrin Complexes and Their Application to Organic Light Emitting Diodes - A Novel Mechanism for Electroluminescence,” Advanced Materials, vol. 21, no. 47, pp. 4802–4806, Aug. 2009, https://doi.org/10.1002/adma.200900983 [12] R. Pode, “Organic light emitting diode devices: An energy efficient solid state lighting for applications,” Renewable and Sustainable Energy Reviews, vol. 133, p. 110043, Nov. 2020, https://doi.org/10.1016/j.rser.2020.110043 [13] http://www.lumiotec.com/en/index.html [14] https://www.lg.com/uk/lg-experience/inspiration/the-history-of-the-oled-tv/ [15] https://www.precedenceresearch.com/table-of-content/2128 [16] https://www.marketsandmarkets.com/Market-Reports/oled-market-200.html [17] https://www.globalmarketestimates.com/market-report/oled-display-market-3369 [18] G. Parthasarathy, J. Liu, and A. R. Duggal, “Organic Light Emitting Devices: From Displays to Lighting,” The Electrochemical Society Interface, vol. 12, no. 2, pp. 42–47, Jun. 2003, https://doi.org/10.1149/2.f10032if [19] https://ocw.snu.ac.kr/sites/default/files/NOTE/w13%20-%20Organic%20LEDs.pdf [20] Mitsuhiro Koden, Yamagata University Japan, “OLED Displays and Lighting”, First Edition, 2017 John Wiley & Sons Ch. 2,3,4. [21] S.-Y. Lu, S. Mukhopadhyay, R. Froese, and P. M. Zimmerman, “Virtual Screening of Hole Transport, Electron Transport, and Host Layers for Effective OLED Design,” Journal of Chemical Information and Modeling, vol. 58, no. 12, pp. 2440–2449, Jun. 2018, https://doi.org/10.1021/acs.jcim.8b00044 [22] S. Reineke, M. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: Status and perspective,” Reviews of Modern Physics, vol. 85, no. 3, pp. 1245–1293, Jul. 2013, https://doi.org/10.1103/revmodphys.85.1245 [23] S.-Y. Lu, S. Mukhopadhyay, R. Froese, and P. M. Zimmerman, “Virtual Screening of Hole Transport, Electron Transport, and Host Layers for Effective OLED Design,” Journal of Chemical Information and Modeling, vol. 58, no. 12, pp. 2440–2449, Jun. 2018, https://doi.org/10.1021/acs.jcim.8b00044 [24] B. Diouf, W. S. Jeon, R. Pode, and J. H. Kwon, “Efficiency Control in Iridium Complex-Based Phosphorescent Light-Emitting Diodes,” Advances in Materials Science and Engineering, vol. 2012, pp. 1–14, 2012, https://doi.org/10.1155/2012/794674 [25] https://oled.com/oleds/ [26] https://m.blog.naver.com/PostView.naver?isHttpsRedirect=true&blogId=ysahn2k&logNo=220177577711 [27] Hong, M.; Ravva, M. K.; Winget, P.; Bredas, J.-L., Effect of substituents on the electronic structure and degradation process in carbazole derivatives for blue OLED host materials. Chemistry of Materials, 28 (16), 5791-5798, 2016 https://doi.org/10.1021/acs.chemmater.6b02069 [28] Tao, Y.; Yang, C.; Qin, J., Organic host materials for phosphorescent organic light-emitting diodes. Chemical Society Reviews, 40 (5), 2943-2970, 2011. https://doi.org/10.1039/C0CS00160K [29] Seunghyun Lee, 2018, (thesis) “Chemical Degradation of OLED Host Materials: The Role of Non-Local Interaction in Electronic Excited States”, Department of Physics Graduate School of UNIST. [30] L. Paterson, F. May, and D. Andrienko, “Computer aided design of stable and efficient OLEDs,” Journal of Applied Physics, vol. 128, no. 16, p. 160901, Oct. 2020 https://doi.org/10.1063/5.0022870 [31] F. C. Chen, G. He, and Y. Yang, “Triplet exciton confinement in phosphorescent polymer light-emitting diodes,” Applied Physics Letters, vol. 82, p. 1006, 2003. [32] https://doi.org/10.1063/1.1544658 U [33] https://noctiluca.eu/generations-of-oled-emitters/ [34] F.-C. Chen, G. He, and Y. Yang, “Triplet exciton confinement in phosphorescent polymer light-emitting diodes,” Applied Physics Letters, vol. 82, no. 7, pp. 1006–1008, Feb. 2003, https://doi.org/10.1063/1.1544658 [35] C. Murawski, K. Leo, and M. C. Gather, “Efficiency Roll-Off in Organic Light-Emitting Diodes,” Advanced Materials, vol. 25, no. 47, pp. 6801–6827, Sep. 2013, https://doi.org/10.1002/adma.201301603 [36] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Applied Physics Letters, vol. 75, no. 1, pp. 4–6, Jul. 1999, https://doi.org/10.1063/1.124258 [37] Fukagawa, H., Shimizu, T., Kamada, T., Yui, S., Hasegawa, M., Morii, K., & Yamamoto, T. Highly efficient and stable organic light-emitting diodes with a greatly reduced amount of phosphorescent emitter. Scientific Reports, 5(1), 2015. https://doi.org/10.1038/srep09855 [38] Baldo, M. A., O’Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E., & Forrest, S. R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 395(6698), 1998. https://doi.org/10.1038/25954 [39] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence,” Nature, vol. 492, no. 7428, pp. 234–238, Dec. 2012, https://doi.org/10.1038/nature11687 [40] K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nature Photonics, vol. 6, no. 4, pp. 253–258, Mar. 2012, https://doi.org/10.1038/nphoton.2012.31 [41] Nakanotani, H., Higuchi, T., Furukawa, T., Masui, K., Morimoto, K., Numata, M., Tanaka, H., Sagara, Y., Yasuda, T., & Adachi, C. High-efficiency organic light-emitting diodes with fluorescent emitters. Nature Communications, 5(1), 2014. https://doi.org/10.1038/ncomms5016 [42] https://www.kyulux.com/ [43] https://www.ossila.com/ [44] https://lumtec.com.tw/index.php [45] M. Sundberg, O. Inganäs, S. Stafström, G. Gustafsson, and B. Sjögren, “Optical absorption of poly(3-alkylthiophenes) at low temperatures,” Solid State Communications, vol. 71, no. 6, pp. 435–439, Aug. 1989, https://doi.org/10.1016/0038-1098(89)90087-2 [46] F.-C. Chen, “Organic Semiconductors,” Encyclopedia of Modern Optics, pp. 220–231, 2018, https://doi.org/10.1016/b978-0-12-803581-8.09538-2 [47] J. Casado, R. G. Hicks, V. Hernández, D. J. T. Myles, M. C. Ruiz Delgado, and J. T. López Navarrete, “Infrared and Raman features of a series of α,ω-bis(arylthio)oligothiophenes as molecular wires. A π-electron delocalization efficiency study,” The Journal of Chemical Physics, vol. 118, no. 4, pp. 1912–1920, Jan https://doi.org/10.1063/1.1532170 [48] Cai, Yuankun, "Organic light emitting diodes (OLEDs) and OLED-based structurally integrated optical sensors" (2010). Graduate Theses and Dissertations. 11488. https://lib.dr.iastate.edu/etd/11488 [49] https://www.comsol.com/blogs/simulation-paves-the-way-for-more-efficient-oled-devices/ [50] K. Seki, “Overall current-voltage characteristics of space charge controlled currents for thin films by a single carrier species,” Journal of Applied Physics, vol. 116, no. 6, p. 063716, Aug. 2014, https://doi.org/10.1063/1.4892987 [51] J. A. Röhr, D. Moia, S. A. Haque, T. Kirchartz, and J. Nelson, “Exploring the validity and limitations of the Mott–Gurney law for charge-carrier mobility determination of semiconducting thin-films,” Journal of Physics: Condensed Matter, vol. 30, no. 10, p. 105901, Feb. 2018, https://doi.org/10.1088/1361-648x/aaabad [52] X.-G. Zhang and S. T. Pantelides, “Theory of Space Charge Limited Currents,” Physical Review Letters, vol. 108, no. 26, Jun. 2012, https://doi.org/10.1103/physrevlett.108.266602 [53] Helander, M.G., Wang, Z., Lu, ZH. (2016). Electrode–Organic Interface Physics. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9780-1_10 [54] M. G. Helander, Z. Wang, and Z.-H. Lu, “Electrode–Organic Interface Physics,” Encyclopedia of Nanotechnology, pp. 1015–1024, 2016, https://doi.org/10.1007/978-94-017-9780-1_10 [55] P. N. Murgatroyd, “Theory of space-charge-limited current enhanced by Frenkel effect,” Journal of Physics D: Applied Physics, vol. 3, no. 2, pp. 151–156, Feb. 1970 https://doi.org/10.1088/0022-3727/3/2/308 [56] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices,” Apr. 2006, (2007) https://doi.org/10.1002/0470068329 [57] https://www.electronicshub.org/oled-display-technology/ [58] https://electronics.howstuffworks.com/oled2.htm [59] https://www.futaba.co.jp/en/product/oled/about [60] https://www.radiantvisionsystems.com/blog/innovations-oled-technology-expand-possibilities-next-gen-displays [61] https://avantama.com/current-applications-oled-devices/ [62] https://www.electronicsforu.com/resources/oled-displays-applications [63] https://www.soar-tech.co.jp/en/oled/application/ [64] https://www.elprocus.com/oled-display-technology-architecture-applications/ [65] https://www.sony-semicon.com/en/products/microdisplay/oled.html [66] M. Koden, “History of Flexible OLEDs,” SpringerBriefs in Applied Sciences and Technology, pp. 19–33, 2022, https://doi.org/10.1007/978-981-19-3544-2_3 [67] Furong Zhu, Xiao-Tao Hao, Ong Kian Soo, Yanqing Li, and Li-Wei Tan, “Toward Novel Flexible Display - Top-Emitting OLEDs on Al-Laminated PET Substrates,” Proceedings of the IEEE, vol. 93, no. 8, pp. 1440–1446, Aug. 2005, https://doi.org/10.1109/jproc.2005.851627 [68] Y.-F. Liu, M.-H. An, Y.-G. Bi, D. Yin, J. Feng, and H.-B. Sun, “Flexible Efficient Top-Emitting Organic Light-Emitting Devices on a Silk Substrate,” IEEE Photonics Journal, vol. 9, no. 5, pp. 1–6, Oct. 2017, https://doi.org/10.1109/jphot.2017.2740618 [69] Chen, S., Deng, L., Xie, J., Peng, L., Xie, L., Fan, Q., & Huang, W. “Recent Developments in Top-Emitting Organic Light-Emitting Diodes”. Advanced Materials, 22(46), 5227–5239, 2010 https://doi.org/10.1002/adma.201001167 [70] Kwon, S., Lee, E.-H., Kim, K., Choi, H., Park, M. J., Kim, S. K., Pode, R., & Kwon, J. H. (2017). Efficient micro-cavity top emission OLED with optimized Mg:Ag ratio cathode. Optics Express, 25(24), 29906. https://doi.org/10.1364/oe.25.029906 [71] S. K. Kim, R. Lampande, and J. H. Kwon, “Technical status of top-emission organic light-emitting diodes,” Journal of Information Display, vol. 22, no. 3, pp. 115–126, Jan. 2021, https://doi.org/10.1080/15980316.2021.1876173 [72] Cho, H., Byun, C.-W., Kang, C.-M., Shin, J.-W., Kwon, B.-H., Choi, S., Cho, N. S., Lee, J.-I., Kim, H., Lee, J. H., Kim, M., & Lee, H. White organic light-emitting diode (OLED) microdisplay with a tandem structure. Journal of Information Display, 20(4), 249–255, (2019). https://doi.org/10.1080/15980316.2019.1671240 [73] Lee, S. J., Kang, C., Shin, J.-W., Ahn, D. H., Joo, C. W., Cho, H., Cho, N. S., Youn, H. M., An, Y. J., Kim, J. S., Lee, J., & Lee, H. (2022). Three-wavelength white organic light-emitting diodes on silicon for high luminance and color gamut microdisplays. Journal of Industrial and Engineering Chemistry, 105, 132–137. https://doi.org/10.1016/j.jiec.2021.09.014 [74] Motoyama, Y., Sugiyama, K., Tanaka, H., Tsuchioka, H., Matsusaki, K., & Fukumoto, H. (2019). High‐efficiency OLED microdisplay with microlens array. Journal of the Society for Information Display, 27(6), 354–360. https://doi.org/10.1002/jsid.784 [75] A. P. Ghosh, T. A. Ali, I. Khayrullin, F. Vazan, O. F. Prache, and I. Wacyk, “Recent advances in small molecule OLED-on-silicon microdisplays,” Organic Light Emitting Materials and Devices XIII, Aug. 2009, https://doi.org/10.1117/12.829502 [76] Lee, H., Cho, H., Byun, C.-W., Kang, C.-M., Han, J.-H., Lee, J.-I., Kim, H., Lee, J. H., Kim, M., & Cho, N. S. Device Characteristics of Top-Emitting Organic Light Emitting Diodes Depending on Anode Materials for CMOS-Based OLED Microdisplays. IEEE Photonics Journal, 10(6), 1–9, (2018). https://doi.org/10.1109/jphot.2018.2877196 [77] C.-W. Han, M.-K. Han, W.-J. Nam, S.-J. Bae, and I. B. Kang, “A Top-Emitting Organic Light-Emitting Diode Employing a Top-Cathode Connected to Amorphous Silicon TFTs,” Journal of The Electrochemical Society, vol. 154, no. 10, p. J306, 2007, https://doi.org/10.1149/1.2761252 [78] Jean, F. Mulot, J.-Y. Geffroy, B. Denis, C. Cambon, P. Microcavity organic light-emitting diodes on silicon. Appl. Phys. Lett. 81, 1717–1719, 2002, https://doi.org/10.1063/1.1503865 [79] Gohri, V. Hofmann, S. Reineke, S. Rosenow, T. Thomschke, M. Levichkova, M. Lüssem, B. Leo, K. White top-emitting organic light-emitting diodes employing a heterostructure of down-conversion layers. Org. Electron, 12, 2126–2130, 2011. https://doi.org/10.1016/j.orgel.2011.09.002 [80] Hatton, R.A. Willis, M.R. Chesters, M.A. Rutten, F.J.M. Briggs, D. Enhanced hole injection in organic light-emitting diodes using a SAM-derivatised ultra-thin gold anode supported on ITO glass. J. Mater. Chem. 13, 38–43, 2002. https://doi.org/10.1039/B208169P [81] Kanai, K.; Koizumi, K.; Ouchi, S.; Tsukamoto, Y.; Sakanoue, K.; Ouchi, Y.; Seki, K. Electronic structure of anode interface with molybdenum oxide buffer layer. Org. Electron. 11, 188–194,2010. https://doi.org/10.1016/j.orgel.2009.10.013 [82] C. Y. Park and B. Choi, “Enhanced Hole Injection Characteristics of a Top Emission Organic Light-Emitting Diode with Pure Aluminum Anode,” Nanomaterials, vol. 11, no. 11, p. 2869, Oct. 2021, https://doi.org/10.3390/nano11112869 [83] S. j. Chung, J.-H. Lee, J. w. Jeong, J.-J. Kim, Y.T. Hong, “Influence of Substrate Thermal Conductivity on OLED Lifetime,” IMID/IDMC/ASIA DISPLAY ‘08 DIGEST, 1026-1029, 2008. [84] S. Chung, J.-H. Lee, J. Jeong, J.-J. Kim, and Y. Hong, “Substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes,” Applied Physics Letters, vol. 94, no. 25, p. 253302, Jun. 2009, https://doi.org/10.1063/1.3154557 [85] R. E. Triambulo and J.-W. Park, “Heat evolution and dissipation in organic light-emitting diodes on flexible polymer substrates,” Organic Electronics, vol. 28, pp. 123–134, Jan. 2016 https://doi.org/10.1016/j.orgel.2015.10.023 [86] Y.-G. Ju, “Micro-cavity in organic light-emitting diode,” Organic Light Emitting Diode - Material, Process and Devices, Jul. 2011, https://doi.org/10.5772/19292 [87] Zhang, J., Jiao, Z.-Q., Yan, H.-J., Chen, F.-D., Huang, Q.-Y., Kang, L.-L., Liu, X.-Y., Wang, L., & Yuan, G.-C. Influence of microcavity effect on the performance of top emission tandem blue organic light emitting devices. Acta Physica Sinica, 69(9), 096104, 2020, https://doi.org/10.7498/aps.69.20191576 [88] “Microcavity Effect of Top-emission Organic Light-emitting Diodes Using Aluminum Cathode and Anode,” Bulletin of the Korean Chemical Society, vol. 26, no. 9, pp. 1344–1346, Sep. 2005, https://doi.org/10.5012/bkcs.2005.26.9.1344 [89] L. Duan, G. Wang, Y. Duan, D. Lei, F. Qian, and Q. Yang, “Design Simulation and Preparation of White OLED Microdisplay Based on Microcavity Structure Optimization,” Journal of Spectroscopy, vol., pp. 1–8, May 2021, https://doi.org/10.1155/2021/5529644 [90]https://commons.wikimedia.org/wiki/File:Sony%27s_Super_Top_Emission_OLED.png [91] Han, T.-H., Park, M.-H., Kwon, S.-J., Bae, S.-H., Seo, H.-K., Cho, H., Ahn, J.-H., & Lee, T.-W. Approaching ultimate flexible organic light-emitting diodes using a graphene anode. NPG Asia Materials, 8(9), e303–e303, 2016, https://doi.org/10.1038/am.2016.108 [92] H. Li, Y. Liu, A. Su, J. Wang, and Y. Duan, “Promising Hybrid Graphene-Silver Nanowire Composite Electrode for Flexible Organic Light-Emitting Diodes,” Scientific Reports, vol. 9, no. 1, Nov. 2019, https://doi.org/10.1038/s41598-019-54424-3 [93] J. Cao, X. Jiang, and Z. Zhang, “MoOx modified Ag anode for top-emitting organic light-emitting devices,” Applied Physics Letters, vol. 89, no. 25, p. 252108, Dec. 2006, https://doi.org/10.1063/1.2408647 [94] Lu, M.-H., Weaver, M. S., Zhou, T. X., Rothman, M., Kwong, R. C., Hack, M., & Brown, J.J. High-efficiency top-emitting organic light-emitting devices. Applied Physics Letters, 81(21), 3921–3923, 2002. https://doi.org/10.1063/1.1523150 [95] S. Amoah, X. Fu, S. Yin, Q. Dong, C. Dong, and F. So, “Curved Mirror Arrays for Light Extraction in Top-Emitting Organic Light-Emitting Diodes,” ACS Applied Materials & Interfaces, vol. 14, no. 7, pp. 9377–9385, Feb. 2022, https://doi.org/10.1021/acsami.1c21128 [96] ang, I. G., Murugadoss, V., Park, T. H., Son, K. R., Lee, H. J., Ren, W., Yu, M. J., & Kim, T. G. Cavity-Suppressing Electrode Integrated with Multi-Quantum Well Emitter: A Universal Approach Toward High-Performance Blue TADF Top Emission OLED. Nano-Micro Letters, 14(1), (2022). https://doi.org/10.1007/s40820-022-00802-y [97] W. Q. Zhao, G. Z. Ran, W. J. Xu, and G. G. Qin, “Inverted top-emission organic light-emitting device with n-type silicon as cathode,” Journal of Physics D: Applied Physics, vol. 41, no. 3, p. 035106, Jan. 2008. https://doi.org/10.1088/0022-3727/41/3/035106 [98] T. Ichikawa, A. Takagi, N. Yamada, K. Itonaga, H. Nakanotani, and C. Adachi, “High-efficiency near-infrared OLED microdisplay with fine pixel array,” Digital Optical Technologies 2021, Jun. 2021. https://doi.org/10.1117/12.2595135 [99] K. Bouzid, T. Maindron, and H. Kanaan, “Thin-film encapsulated white organic light top-emitting diodes using a WO3/Ag/WO3 cathode to enhance light out-coupling,” Journal of the Society for Information Display, vol. 24, no. 9, pp. 563–568, Sep. 2016, https://doi.org/10.1002/jsid.466 [100] Xie, G., Xue, Q., Chen, P., Tao, C., Zhao, C., Lu, J., Gong, Z., Zhang, T., Huang, R., Du, H., Xie, W., Hou, J., Zhao, Y., & Liu, S. Highly efficient and low-cost top-emitting organic light-emitting diodes for monochromatic microdisplays. Organic Electronics, 11(3), 407–411, mar. 2010. https://doi.org/10.1016/j.orgel.2009.11.019 [101] Xie, G., Zhang, Z., Xue, Q., Zhang, S., Zhao, L., Luo, Y., Chen, P., Quan, B., Zhao, Y., & Liu, S. (2010). Highly efficient top-emitting white organic light-emitting diodes with improved contrast and reduced angular dependence for active matrix displays. Organic Electronics, 11(12), 2055–2059, 2010 . https://doi.org/10.1016/j.orgel.2010.10.001 [102] Yoshida, K., Manousiadis, P.P., Bian, R. et al. 245 MHz bandwidth organic light-emitting diodes used in a gigabit optical wireless data link. Nat Commun 11, 1171 (2020). https://doi.org/10.1038/s41467-020-14880-2 [103] http://www.summit-tech.com.tw/submin.html [104] F.-S. Juang, K. D. Patel, K.-C. Huang, W.-X. Juang, J.-Y. Chen, and L.-A. Hong, “The Selection of Anode and Cathode Materials for Top Emission Organic Light-Emitting Diodes,” International Journal of Photoenergy, vol. 2022, pp. 1–10, Jun. 2022, https://doi.org/10.1155/2022/6401932 [105] Jayabharathi, J., Panimozhi, S. & Thanikachalam, V. Asymmetrically twisted phenanthrimidazole derivatives as host materials for blue fluorescent, green and red phosphorescent OLEDs. Sci Rep 9, 17555 (2019). https://doi.org/10.1038/s41598-019-54125-x [106] N. Jain, V. Singh, and V. Prajapati, “Investigation of Efficient Hole Injection Layer for Enhancement of Opto-Electrical Properties of an Organic Light Emitting Diode,” Journal of Physics: Conference Series, vol. 2062, no. 1, p. 012025, Nov. 2021, https://doi.org/10.1088/1742-6596/2062/1/012025 [107] Rajan, G., Yadav, V., Manzhi, P., Chauhan, G., Suman, C. K., Srivastava, R., & Sinha, O. P. “Study of injection and transport properties of metal/organic interface using HAT-CN molecules as hole injection layer,” Vacuum, vol. 146, pp. 530–536, Dec. 2017, https://doi.org/10.1016/j.vacuum.2017.07.007 [108] T.-H. Han, W. Song, and T.-W. Lee, “Elucidating the Crucial Role of Hole Injection Layer in Degradation of Organic Light-Emitting Diodes,” ACS Applied Materials & Interfaces, vol. 7, no. 5, pp. 3117–3125, Jan. 2015, https://doi.org/10.1021/am5072628 [109] Y.-K. Kim, J. Won Kim, and Y. Park, “Energy level alignment at a charge generation interface between 4,4′-bis(N-phenyl-1-naphthylamino)biphenyl and 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile,” Applied Physics Letters, vol. 94, no. 6, Feb. 2009, https://doi.org/10.1063/1.3081409 [110] J.-H. Lee and J.-J. Kim, “Interfacial doping for efficient charge injection in organic semiconductors,” physica status solidi (a), vol. 209, no. 8, pp. 1399–1413, Jul. 2012, https://doi.org/10.1002/pssa.201228199 [111] S.-J. Yoo, J.-H. Chang, J.-H. Lee, C.-K. Moon, C.-I. Wu, and J.-J. Kim, “Formation of perfect ohmic contact at indium tin oxide/N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine interface using ReO3,” Scientific Reports, vol. 4, no. 1, Jan. 2014, https://doi.org/10.1038/srep03902 [112] H.-G. Park and S.-G. Park, “Electro-Optical Performance of Organic Thin-Film Using HAT(CN)6 between Anode and Organic Materials,” Coatings, vol. 9, no. 10, p. 648, Oct. 2019, https://doi.org/10.3390/coatings9100648 [113] Yang, J.-P., Bussolotti, F., Li, Y.-Q., Zeng, X.-H., Kera, S., Tang, J.-X., & Ueno, N. “The role of gap states on energy level alignment at an α-NPD/HAT(CN) 6 charge generation interface,” Organic Electronics, vol. 24, pp. 120–124, Sep. 2015, https://doi.org/10.1016/j.orgel.2015.05.033 [114] E. Oh, S. Park, J. Jeong, S. J. Kang, H. Lee, and Y. Yi, “Energy level alignment at the interface of NPB/HAT-CN/graphene for flexible organic light-emitting diodes,” Chemical Physics Letters, vol. 668, pp. 64–68, Jan. 2017, https://doi.org/10.1016/j.cplett.2016.12.007 [115] L. Liu, S. Li, Y. M. Zhou, L. Y. Liu, and X. A. Cao, “High-current stressing of organic light-emitting diodes with different electron-transport materials,” Microelectronics Reliability, vol. 71, pp. 106–110, Apr. 2017, https://doi.org/10.1016/j.microrel.2017.03.002 [116] W. X. Shi, N. Liu, Y. M. Zhou, and X. A. Cao, “Effects of Postannealing on the Characteristics and Reliability of Polyfluorene Organic Light-Emitting Diodes,” IEEE Transactions on Electron Devices, vol. 66, no. 2, pp. 1057–1062, Feb. 2019, https://doi.org/10.1109/ted.2018.2888858 [117] Liu, N., Mei, S., Sun, D., Shi, W., Feng, J., Zhou, Y., Mei, F., Xu, J., Jiang, Y., & Cao, X. “Effects of Charge Transport Materials on Blue Fluorescent Organic Light-Emitting Diodes with a Host-Dopant System,” Micromachines, vol. 10, no. 5, p. 344, May 2019, https://doi.org/10.3390/mi10050344 [118] Y. Wang, B. Li, C. Jiang, Y. Fang, P. Bai, and Y. Wang, “Study on Electron Transport Characterization in TPBi Thin Films and OLED Application,” The Journal of Physical Chemistry C, vol. 125, no. 30, pp. 16753–16758, Jul. 2021, https://doi.org/10.1021/acs.jpcc.1c04138 [119] Y. Iwasaki, H. Fukagawa, and T. Shimizu, “Effect of Host Moieties on the Phosphorescent Spectrum of Green Platinum Complex,” Molecules, vol. 24, no. 3, p. 454, Jan. 2019, https://doi.org/10.3390/molecules24030454 [120] S. K. Jeon, H. L. Lee, K. S. Yook, and J. Y. Lee, “Recent Progress of the Lifetime of Organic Light‐Emitting Diodes Based on Thermally Activated Delayed Fluorescent Material,” Advanced Materials, vol. 31, no. 34, p. 1803524, Mar. 2019, https://doi.org/10.1002/adma.201803524 [121] D. Zhang, J. Qiao, D. Zhang, and L. Duan, “Ultrahigh-Efficiency Green PHOLEDs with a Voltage under 3 V and a Power Efficiency of Nearly 110 lm W−1 at Luminance of 10 000 cd m−2,” Advanced Materials, vol. 29, no. 40, p. 1702847, Sep. 2017, https://doi.org/10.1002/adma.201702847 [122] L. Duan, G. Wang, Y. Duan, D. Lei, F. Qian, and Q. Yang, “Design Simulation and Preparation of White OLED Microdisplay Based on Microcavity Structure Optimization,” Journal of Spectroscopy, vol. 2021, pp. 1–8, May 2021, https://doi.org/10.1155/2021/5529644 [123] S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Optics Express, vol. 19, no. S6, p. A1250, Nov. 2011, https://doi.org/10.1364/oe.19.0a1250
|