|
[1]D. D. Rizos and S. D. Fassois, “Friction identification based upon the LuGre and Maxwell slip models,” IFAC Proc. Vol., vol. 16, no. 1, pp. 548–553, 2005, doi: 10.3182/20050703-6-cz-1902.00092. [2]H. Olsson and K. J. Åström, “Friction generated limit cycles,” IEEE Trans. Control Syst. Technol., vol. 9, no. 4, pp. 629–636, 2001, doi: 10.1109/87.930974. [3]P. R. Dahl, “A Solid Friction Model (modèle Dahl),” Tech. Report, Aerosp. Corp. El Segundo, vol. 158, 1968. [4]C. Canudas-de-Wit, “A new model for control of systems with friction",” IEEE Trans. Automat. Contr., vol. 43, no. 8, pp. 1189–1190, 1998, doi: 10.1109/9.704999. [5]K. J. Åström, C. Canudas-de-wit, C. Augustin, and D. C. Amonton, “The LuGre Friction Model,” IEEE Control Syst., no. December, pp. 101–114, 2008. [6]V. Lampaert, J. Swevers, and F. Al-Bender, “Modification of the Leuven integrated friction model structure,” IEEE Trans. Automat. Contr., vol. 47, no. 4, pp. 683–687, 2002, doi: 10.1109/9.995050. [7]C. Ganseman, J. Swevers, T. Prajogo, and F. Al-Bender, “An integrated friction model with improved presliding behaviour,” IFAC Proc. Vol., vol. 30, no. 20, pp. 153–158, 1997, doi: 10.1016/s1474-6670(17)44258-3. [8]C. Hsieh and Y. C. Pan, “Dynamic behavior and modelling of the pre-sliding static friction,” Wear, vol. 242, no. 1–2, pp. 1–17, 2000, doi: 10.1016/S0043-1648(00)00399-9. [9]F. Al-Bender, V. Lampaert and J. Swevers, “The generalized Maxwell-slip model: a novel model for friction Simulation and compensation,” in IEEE Transactions on Automatic Control, vol. 50, no. 11, pp. 1883-1887, Nov. 2005, doi: 10.1109/TAC.2005.858676. [10]F. Al-Bender and J. Swevers, “Characterization of Friction Force Dynamics,” IEEE Control Syst., vol. 28, no. 6, pp. 64–81, 2008, doi: 10.1109/MCS.2008.929279. [11]D. D. Rizos and S. D. Fassois, “Presliding friction identification based upon the Maxwell Slip model,” Chaos, Interdisciplin. J. Nonlinear Sci., vol. 14, no. 2, pp. 431–445, 2004. [12]S. J. Kim, S. Y. Kim, and I. J. Ha, “An efficient identification method for friction in single-DOF motion control systems,” IEEE Trans. Control Syst. Technol., vol. 12, no. 4, pp. 555–563, Jul. 2004. [13]J. Shen, Q. Lu, C. Wu and W. Jywe, “Sliding-mode tracking control with DNLRX Model-based friction compensation for the precision stage,” in IEEE/ASME Transactions on Mechatronics, vol. 19, no. 2, pp. 788-797, April 2014, doi: 10.1109/TMECH.2013.2260762. [14]K. Worden, C. X. Wong, U. Parlitz, A. Hornstein, D. Engster, T. Tjahjowidodo, F. Al-Bender, D. D. Rizos, and S. D. Fassois, “Identification of pre-sliding and sliding friction dynamics: Grey box and Black-box models,” Mech. Syst. Signal Process., vol. 21, pp. 514–534, 2007. [15]P. I. Ro, W. Shim, and A. Jeong, “Robust friction compensation for submicrometer positioning and tracking for a ball-screw-driven slid system,” Precis. Eng., vol. 24, pp. 160–173, 2000. [16] L. Freidovich, A. Robertsson, A. Shiriaev, and R. Johansson, “LuGre model based friction compensation,” IEEE Trans. Control Syst. Technol., vol. 18, no. 1, pp. 194–200, Jan. 2010. [17]Z. Jamaludin, H. Van Brussel, and J. Swevers, “Friction compensation of an XY feed table using friction-model-based feedforward and an inverse model-based disturbance observer,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3848–3853, Oct. 2009. [18]C. I. Huang and L. C. Fu, “Adaptive approach to motion controller of linear induction motor with friction compensation,” IEEE/ASME Trans. Mechatronics, vol. 12, no. 4, pp. 480–490, Aug. 2007. [19]T. H. Lee, K. K. Tan, and S. Huang, “Adaptive friction compensation with dynamical friction model,” IEEE/ASME Trans. Mechatronics, vol. 16, no. 1, pp. 133–140, Feb. 2011. [20]W. F. Xie, “Sliding-mode-observer-based adaptive control for servo actuator with friction,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1517–1727, Jun. 2007. [21]S. N. Huang, K. K. Tan, and T. H. Lee, “Adaptive friction compensation using neural network approximations,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 30, no. 4, pp. 551–557, Nov. 2000. [22]C. H. Liu, W. Y. Jywe, Y. R. Jeng, T, H, Hsu and Y, T. Li, 2010, “Design and control of a long-traveling nano-positioning stage”, Precision Engineering, Vol. 34, pp. 497-506. [23]J. C. Shen, C. H. Wu, B. Y. Chen and W. Y. Jywe, 2014, “Control of a long-stroke precision scanning stage”, Proceedings of the 22nd Mediterranean Conference on Control and Automation, pp. 311-315. [24]J. C. Shen, W. Y. Jywe, Q. Z. Lu and C. H. Wu, 2012, “Control of a high precision positioning stage”, Proceedings of the 7nd IEEE Conference on Industrial Electronics and Applications, pp. 918-922. [25]J. M. Breguet, R. Perez, A. Bergander, C. Schmitt, R. Clavel and H. Bleuler, 2000, “Piezoactuators for motion control from centimeter to nanometer”, Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and System, Vol. 1, pp. 492-497. [26]K. Kawashima, T. Arai, K. Tadano, T. Fujita and T. Kagawa, 2010, “Development of coarse/fine dual stage using pneumatically driven bellows actuator and cylinder with air bearings”, Precision Engineering, Vol. 34, pp. 526-533. [27]K. J. Astrom, T. Hagglund, C. C. Hang, and W. K. Ho, “Automatic tuning and adaptation for PID controllers—A survey,” IFAC J. Contr. Eng. Practice, vol. 1, no. 4, pp. 699–714, 1993. [28]J. C. Basilio and S. R. Matos, "Design of PI and PID controllers with transient performance specification," in IEEE Transactions on Education, vol. 45, no. 4, pp. 364-370, Nov. 2002, doi: 10.1109/TE.2002.804399. [29]W. K. Ho, C. C. Hang, and J. Zhou, “Self-tuning PID control of a plant with under-damped response with specifications on gain and phase margins,” IEEE Trans. Contr. Syst. Technol., vol. 5, pp. 446–452, 1997. [30]Åström, K. J., & Hägglund, T. PID Controllers: Theory, Design, and Tuning, Research Triangle Park, North Carolina: ISA - The Instrumentation, Systems and Automation Society, 1995. 343 p. [31]Q. Wang, T. Lee, H. Fung, Q. Bi, and Y. Zhang, “PID tuning for improved performance,” IEEE Trans. Contr. Syst. Technol., vol. 7, pp. 457–465, 1999. [32]Jing-Chung Shen, “Fuzzy neural networks for tuning PID controller for plants with underdamped responses,” in IEEE Transactions on Fuzzy Systems, vol. 9, no. 2, pp. 333-342, April 2001, doi: 10.1109/91.919254. [33]P. Yang, Z. Zhang, J. Zhao, and D. Zhou, “Improved PID friction feed-forward compensation control based on segment friction model,” The Open Automation and Control Systems Journal, vol. 6, no. 1, pp. 1620–1628, Dec. 2014. [34]H. Wu, W. Su and Z. Liu, "PID controllers: Design and tuning methods," 2014 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, 2014, pp. 808-813, doi: 10.1109/ICIEA.2014.6931273. [35]S. Chen, S. A. Billings, and P. M. Grant, “Non-linear system identification using neural networks”, Int. J. Contr., vol. 51, no. 6, pp. 1191-1214, 1990. [36]Hang Xie, Hao Tang and Yu-He Liao, “Time series prediction based on NARX neural networks: An advanced approach,” 2009 International Conference on Machine Learning and Cybernetics, Hebei, 2009, pp. 1275-1279, doi: 10.1109/ICMLC.2009.5212326. [37]B. G. Horne and C. L. Giles, “An experimental comparison of recurrent neural networks”, in Advances in Neural Information Processing Systems 7, G. Tesauro, D. Touretzky, and T. Leen, Eds. Cambridge, MA: MIT Press, 1995, pp. 697-704. [38]H. K. Sahoo, P. K. Dash, and N. P. Rath, “NARX model based nonlinear dynamic system identification using low complexity neural networks and robust H∞ filter”. Appl. Soft Comput. 13, 7 (July, 2013), 3324–3334. DOI:https://doi.org/10.1016/j.asoc.2013.02.007 [39]Liu Qianjie, Chen Wei, Hu Huosheng, Zhu Qingyuan, and Xie Zhixiang, “An Optimal NARX Neural Network Identification Model for a Magnetorheological Damper with Force-Distortion Behavior”, Frontiers in Materials., vol. 7, no. 10, Feb. 2020, doi: 10.3389/fmats.2020.00010. [40]R. H. Osgouei, S. Shin, J. R. Kim and S. Choi, “An inverse neural network model for data-driven texture rendering on electrovibration display,” 2018 IEEE Haptics Symposium (HAPTICS), San Francisco, CA, 2018, pp. 270-277, doi: 10.1109/HAPTICS.2018.8357187. [41]H. T. Siegelmann, B. G. Horne, and C. L. Giles, “Computational capabilities of recurrent narx neural networks”, IEEE Trans. Syst., Man Cybern., pt. B, vol 27, p. 208, Apr. 1997. [42]Renishaw, “RLU10 laser unit,” L-9904-2346-05-B datasheet, 2011/65/EU. [43]Renishaw, “RLD10 90º detector head,” L-9904-2347-05-A datasheet, UK: Jan, 2014. [44]Trust Automation, Inc., “TA310 LINEAR DRIVE”, TA310 datasheet, USA: Dec, 2014. [45]Accel Technologies, “LINEAR ACTUATOR”, VLR0262-0249-00A datasheet, China: Dec, 2012. [46]H. Alimohammadi, B. B. Alagoz, A. Tepljakov, K. Vassiljeva, and E. Petlenkov, “A NARX Model Reference Adaptive Control Scheme: Improved Disturbance Rejection Fractional-Order PID Control of an Experimental Magnetic Levitation System,” Algorithms, vol. 13, no. 8, p. 201, Aug. 2020. [47]P. Jain and M. J. Nigam, “Comparative Analysis of MIT Rule and Differential Evolution on Magnetic Levitation System,” International Journal of Electronics and Electrical Engineering, vol. 3, no. 2, p 153-157, 2014.
|