|
Akhtar, T. A., Orsomando, G., Mehrshahi, P., Lara‐Núñez, A., Bennett, M. J., Gregory III, J. F., & Hanson, A. D. (2010). A central role for gamma‐glutamyl hydrolases in plant folate homeostasis. The Plant Journal, 64, 256-266. Arcot, J., & Shrestha, A. (2005). Folate: methods of analysis. Trends in Food Science & Technology, 16, 253-266. Baenas, N., Marhuenda, J., García-Viguera, C., Zafrilla, P., & Moreno, D. A. (2019). Influence of cooking methods on glucosinolates and isothiocyanates content in novel cruciferous foods. Foods, 8, 257. Bailey, L. B. (2009). Folate in health and disease. CRC Press, 430-431. Balakrishna, A. K., Wazed, M. A., & Farid, M. (2020). A review on the effect of high pressure processing (HPP) on gelatinization and infusion of nutrients. Molecules, 25, 2369. Balasubramaniam, V. M., Martinez-Monteagudo, S. I., & Gupta, R. (2015). Principles and application of high pressure–based technologies in the food industry. Annual Review of Food Science and Technology, 6, 435-462. Balasubramaniam, V. M., Martinez-Monteagudo, S. I., & Gupta, R. (2015). Principles and application of high pressure–based technologies in the food industry. Annual Review of Food Science and Technology, 6, 435-462. Bao, R., Fan, A., Hu, X., Liao, X., & Chen, F. (2016). Effects of high pressure processing on the quality of pickled radish during refrigerated storage. Innovative Food Science & Emerging Technologies, 38, 206-212. Bao, R., Fan, A., Hu, X., Liao, X., & Chen, F. (2016). Effects of high pressure processing on the quality of pickled radish during refrigerated storage. Innovative Food Science & Emerging Technologies, 38, 206-212. Becerra-Moreno, A., Alanís-Garza, P. A., Mora-Nieves, J. L., Mora-Mora, J. P., & Jacobo-Velázquez, D. A. (2014). Kale: An excellent source of vitamin C, pro-vitamin A, lutein and glucosinolates. CyTA-Journal of Food, 12, 298-303. Bekaert, S., Storozhenko, S., Mehrshahi, P., Bennett, M. J., Lambert, W., Gregory, J. F., & Hanson, A. D. (2008). Folate biofortification in food plants. Trends in Plant Science, 13, 28-35. Biegańska-Marecik, R., Radziejewska-Kubzdela, E., & Marecik, R. (2017). Characterization of phenolics, glucosinolates and antioxidant activity of beverages based on apple juice with addition of frozen and freeze-dried curly kale leaves (Brassica oleracea L. var. acephala L.). Food Chemistry, 230, 271-280. Bird, O. D., & McGlohon, V. M. (1972). Differential assays of folic acid in animal tissues. In Analytical Microbiology, 409-437. Blancquaert, D., De Steur, H., Gellynck, X., & Van Der Straeten, D. (2014). Present and future of folate biofortification of crop plants. Journal of Experimental Botany, 65, 895-906. Bosetti, C., Filomeno, M., Riso, P., Polesel, J., Levi, F., Talamini, R., & La Vecchia, C. (2012). Cruciferous vegetables and cancer risk in a network of case–control studies. Annals of Oncology, 23, 2198-2203. Caselunghe, M. B., & Lindeberg, J. (2000). Biosensor-based determination of folic acid in fortified food. Food Chemistry, 70, 523-532. Castorena-Torres, F., Ramos-Parra, P. A., Hernández-Méndez, R. V., Vargas-García, A., García-Rivas, G., & Díaz de la Garza, R. I. (2014). Natural folates from biofortified tomato and synthetic 5-methyl-tetrahydrofolate display equivalent bioavailability in a murine model. Plant Foods for Human Nutrition, 69, 57-64. Chinma, C. E., Anuonye, J. C., Simon, O. C., Ohiare, R. O., & Danbaba, N. (2015). Effect of germination on the physicochemical and antioxidant characteristics of rice flour from three rice varieties from Nigeria. Food Chemistry, 185, 454-458. Chung, M. Y., Lim, T. G., & Lee, K. W. (2013). Molecular mechanisms of chemopreventive phytochemicals against gastroenterological cancer development. World Journal of Gastroenterology, WJG, 19, 984. Clarke, J. D., Hsu, A., Yu, Z., Dashwood, R. H., & Ho, E. (2011). Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Molecular Nutrition & Food Research, 55, 999-1009. Cole, B. F., Baron, J. A., Sandler, R. S., Haile, R. W., Ahnen, D. J., Bresalier, R. S., (2007). Folic acid for the prevention of colorectal adenomas: a randomized clinical trial. The Journal of the American Medical Association, 297, 2351-2359. Copp, A. J., Stanier, P., & Greene, N. D. (2013). Neural tube defects: recent advances, unsolved questions, and controversies. The Lancet Neurology, 12, 799-810. Cossins, E. A. (2000). The fascinating world of folate and one-carbon metabolism. Canadian Journal of Botany, 78, 691-708. Czarnowska, M., & Gujska, E. (2012). Effect of freezing technology and storage conditions on folate content in selected vegetables. Plant Foods for Human Nutrition, 67, 401-406. Czarnowska-Kujawska, M., Gujska, E., & Michalak, J. (2017). Testing of different extraction procedures for folate HPLC determination in fresh fruits and vegetables. Journal of Food Composition and Analysis, 57, 64-72. Day, B. P. F., & Gregory, J. F. (1983). Thermal stability of folic acid and 5‐methyltetrahydrofolic acid in liquid model food systems. Journal of Food Science, 48, 581-587. De Azevedo, C. H., & Rodriguez‐Amaya, D. B. (2005). Carotenoid composition of kale as influenced by maturity, season and minimal processing. Journal of the Science of Food and Agriculture, 85, 591-597. De Souza, S., & Eitenmiller, R. (1990). Effects of different enzyme treatments on extraction of total folate from various foods prior to microbiological assay and radioassay. Journal of Micronutrient Analysis, 7, 37-57. Delchier, N., Herbig, A. L., Rychlik, M., & Renard, C. M. (2016). Folates in fruits and vegetables: contents, processing, and stability. Comprehensive Reviews in Food Science and Food Safety, 15, 506-528. Delchier, N., Reich, M., & Renard, C. M. (2012). Impact of cooking methods on folates, ascorbic acid and lutein in green beans (Phaseolus vulgaris) and spinach (Spinacea oleracea). Lebensmittel-Wissenschaft & Technologie, LWT-Food Science and Technology, 49, 197-201. Delchier, N., Ringling, C., Le Grandois, J., Aoudé-Werner, D., Galland, R., Georgé, S., & Renard, C. M. (2013). Effects of industrial processing on folate content in green vegetables. Food Chemistry, 139, 815-824. Delchier, N., Ringling, C., Maingonnat, J. F., Rychlik, M., & Renard, C. M. (2014). Mechanisms of folate losses during processing: Diffusion vs. heat degradation. Food Chemistry, 157, 439-447. Dhenge, R., Rinaldi, M., Rodolfi, M., Barbanti, D., & Ganino, T. (2023). Modification of structural characteristics of vegetables by high-pressure processing: A review. Food Bioscience, 103407. Ding, Y., Ban, Q., Wu, Y., Sun, Y., Zhou, Z., Wang, Q., & Xiao, H. (2023). Effect of high hydrostatic pressure on the edible quality, health and safety attributes of plant-based foods represented by cereals and legumes: A review. Critical Reviews in Food Science and Nutrition, 63, 4636-4654. Edelmann, M., Kariluoto, S., Nyström, L., & Piironen, V. (2012). Folate in oats and its milling fractions. Food Chemistry, 135, 1938-1947. Emebu, P. K., & Anyika, J. U. (2011). Proximate and mineral composition of kale (Brassica oleracea) grown in Delta State, Nigeria. Pakistan Journal of Nutrition. Finglas, P. M., & Morgan, M. R. A. (1994). Application of biospecific methods to the determination of B-group vitamins in food—a review. Food Chemistry, 49, 191-201. Freisleben, A., Schieberle, P., & Rychlik, M. (2003). Specific and sensitive quantification of folate vitamers in foods by stable isotope dilution assays using high-performance liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 376, 149-156. Goldstein, M. R., & Mascitelli, L. (2024). Unmetabolized folic acid and organ fibrosis: Are they nefarious partners? Medical Hypotheses, 186, 111323. Goli, D. M., & Vanderslice, J. T. (1992). Investigation of the conjugase treatment procedure in the microbiological assay of folate. Food Chemistry, 43, 57-64. Golja, M. V., Trontelj, J., Geršak, K., Mlinarič-Raščan, I., & Šmid, A. (2020). Simultaneous quantification of intracellular concentrations of clinically important metabolites of folate-homocysteine cycle by LC-MS/MS. Analytical Biochemistry, 605, 113830. Gómez-Maqueo, A., García-Cayuela, T., Welti-Chanes, J., & Cano, M. P. (2019). Enhancement of anti-inflammatory and antioxidant activities of prickly pear fruits by high hydrostatic pressure: A chemical and microstructural approach. Innovative Food Science & Emerging Technologies, 54, 132-142. Gregory III, J. F. (1989). Chemical and nutritional aspects of folate research: analytical procedures, methods of folate synthesis, stability, and bioavailability of dietary folates. Advances in Food and Nutrition Research, 33, 1-101. Hashimoto, M., Hossain, S., Matsuzaki, K., Shido, O., & Yoshino, K. (2022). The journey from white rice to ultra-high hydrostatic pressurized brown rice: An excellent endeavor for ideal nutrition from staple food. Critical Reviews in Food Science and Nutrition, 62, 1502-1520. Hawkes, J. G., & Villota, R. (1986). Kinetics of folate degradation during food processing. Le Maguer M., Jelen P.: Food engineering and process applications. Ed. Elsevier Applied Science Amsterdam, Netherlands, 323. Hefni, M., & Witthöft, C. M. (2014). Folate content in processed legume foods commonly consumed in Egypt. Lebensmittel-Wissenschaft & Technologie, LWT-Food Science and Technology, 57, 337-343. Huang, H. W., Hsu, C. P., Yang, B. B., & Wang, C. Y. (2013). Advances in the extraction of natural ingredients by high pressure extraction technology. Trends in Food Science & Technology, 33, 54-62. Huang, H. W., Hsu, C. P., Yang, B. B., & Wang, C. Y. (2013). Advances in the extraction of natural ingredients by high pressure extraction technology. Trends in Food Science & Technology, 33, 54-62. Huang, Y., Ye, M., & Chen, H. (2013). Inactivation of Escherichia coli O157: H7 and Salmonella spp. in strawberry puree by high hydrostatic pressure with/without subsequent frozen storage. International Journal of Food Microbiology, 160, 337-343. Indrawati, Arroqui, C., Messagie, I., Nguyen, M. T., Van Loey, A., & Hendrickx, M. (2004). Comparative study on pressure and temperature stability of 5-methyltetrahydrofolic acid in model systems and in food products. Journal of Agricultural and Food Chemistry, 52, 485-492. Iniesta, M. D., Perez-Conesa, D., Garcia-Alonso, J., Ros, G., & Periago, M. J. (2009). Folate content in tomato (Lycopersicon esculentum). Influence of cultivar, ripeness, year of harvest, and pasteurization and storage temperatures. Journal of Agricultural and Food Chemistry, 57, 4739-4745. Iyer, R., & Tomar, S. K. (2012). Folate and prevention of neural tube disease. Neural Tube Defects, Role of Folate, Prevention Strategies and Genetics, 117. Jägerstad, M., & Jastrebova, J. (2013). Occurrence, stability, and determination of formyl folates in foods. Journal of Agricultural and Food Chemistry, 61, 9758-9768. Jha, A. B., Ashokkumar, K., Diapari, M., Ambrose, S. J., Zhang, H., Tar’an, B., & Purves, R. W. (2015). Genetic diversity of folate profiles in seeds of common bean, lentil, chickpea and pea. Journal of Food Composition and Analysis, 42, 134-140. Johansson, M., Jägerstad, M., & Frølich, W. (2007). Folates in lettuce: a pilot study. Scandinavian Journal of Food and Nutrition, 51, 22-30. Johnston, K. E., Lofgren, P. A., & Tamura, T. (2002). Folate concentrations of fast foods measured by trienzyme extraction method. Food Research International, 35, 565-569. Kahlon, T. S., Chapman, M. H., & Smith, G. E. (2007). In vitro binding of bile acids by spinach, kale, brussels sprouts, broccoli, mustard greens, green bell pepper, cabbage and collards. Food Chemistry, 100, 1531-1536. Khalid, W., Arshad, M. S., Ranjha, M. M. A. N., Różańska, M. B., Irfan, S., Shafique, B., & Kowalczewski, P. Ł. (2022). Functional constituents of plant-based foods boost immunity against acute and chronic disorders. Open Life Sciences, 17, 1075-1093. Khalid, W., Iqra, Afzal, F., Rahim, M. A., Abdul Rehman, A., Faiz ul Rasul, H., & Refai, M. (2023). Industrial applications of kale (Brassica oleracea var. sabellica) as a functional ingredient: A review. International Journal of Food Properties, 26, 489-501. Kim, H. S., Lee, E. J., Lim, S. T., & Han, J. A. (2015). Self-enhancement of GABA in rice bran using various stress treatments. Food Chemistry, 172, 657-662. Kim, M. Y., Lee, S. H., Jang, G. Y., Li, M., Lee, Y. R., Lee, J., & Jeong, H. S. (2017). Changes of phenolic-acids and vitamin E profiles on germinated rough rice (Oryza sativa L.) treated by high hydrostatic pressure. Food Chemistry, 217, 106-111. Kirsch, A. J., & Chen, T. S. (1984). Comparison of conjugase treatment procedures in the microbiological assay for food folacin. Journal of Food Science, 49, 94-98. Kołton, A., Długosz-Grochowska, O., Wojciechowska, R., & Czaja, M. (2022). Biosynthesis regulation of folates and phenols in plants. Scientia Horticulturae, 291, 110561. Konings, E. J. (1999). A validated liquid chromatographic method for determining folates in vegetables, milk powder, liver, and flour. Journal of the Association of Official Agricultural Chemists, 82, 119-127. Korus, A. (2011). Level of vitamin C, polyphenols, and antioxidant and enzymatic activity in three varieties of kale (Brassica oleracea L. var. Acephala) at different stages of maturity. International Journal of Food Properties, 14, 1069-1080. Krebbers, B., Matser, A. M., Koets, M., & Van den Berg, R. W. (2002). Quality and storage-stability of high-pressure preserved green beans. Journal of Food Engineering, 54, 27-33. Laboratory of Government Chemist ( LGC ) .2011. A Government Chemist Programme Report. Laiño, J. E., del Valle, M. J., de Giori, G. S., & LeBlanc, J. G. J. (2013). Development of a high folate concentration yogurt naturally bio-enriched using selected lactic acid bacteria. Lebensmittel-Wissenschaft & Technologie, LWT-Food Science and Technology, 54, 1-5. Lawrence, T., Powers, S., Jones, B., Johnson, N., Kay, J., Bandaranayake, A., & Thavarajah, P. (2021). Genetic variation in the prebiotic carbohydrate and mineral composition of kale (Brassica oleracea L. var. acephala) adapted to an organic cropping system. Journal of Food Composition and Analysis, 96, 103718. Liang, Q., Islam, M. S., Wang, S., Wang, L., Chen, H., Cheng, X., & Zhang, C. (2022). Investigation of folate composition and influence of processing on folate stability in pulse accessions developed in China. Journal of Food Composition and Analysis, 114, 104785. Liu, F., Edelmann, M., Piironen, V., & Kariluoto, S. (2022). 5-Methyltetrahydrofolate is a crucial factor in determining the bioaccessibility of folate in bread. Journal of Agricultural and Food Chemistry, 70, 13379-13390. Lopes, M. L. M., Valente Mesquita, V. L., Chiaradia, A. C. N., Fernandes, A. A. R., & Fernandes, P. M. (2010). High hydrostatic pressure processing of tropical fruits: Importance for maintenance of the natural food properties. Annals of the New York Academy of Sciences, 1189, 6-15. Ložnjak, P., Striegel, L., De la Garza, R. I. D., Rychlik, M., & Jakobsen, J. (2020). Quantification of folate in food using deconjugase of plant origin combined with LC-MS/MS: A method comparison of a large and diverse sample set. Food Chemistry, 305, 125450. Maharaj, P. P., Prasad, S., Devi, R., & Gopalan, R. (2015). Folate content and retention in commonly consumed vegetables in the South Pacific. Food Chemistry, 182, 327-332. Manchali, S., Murthy, K. N. C., & Patil, B. S. (2012). Crucial facts about health benefits of popular cruciferous vegetables. Journal of Functional Foods, 4, 94-106. Maycotte, P., Illanes, M., & Moreno, D. A. (2024). Glucosinolates, isothiocyanates, and their role in the regulation of autophagy and cellular function. Phytochemistry Reviews, 1-35. McNulty, H., & Pentieva, K. (2004). Folate bioavailability. Proceedings of the Nutrition Society, 63, 529-536. Md Nazmul, H., Akhtaruzzaman, M., & Md Zakir, S. (2013). Estimation of Vitamins B-complex (B2, B3, B5 and B6) of some leafy vegetables indigenous to Bangladesh by HPLC method. Journal of Analytical Sciences, Methods and Instrumentation, 203. Melse-Boonstra, A., Verhoef, P., Konings, E. J., Van Dusseldorp, M., Matser, A., Hollman, P. C., & West, C. E. (2002). Influence of processing on total, monoglutamate and polyglutamate folate contents of leeks, cauliflower, and green beans. Journal of Agricultural and Food Chemistry, 50, 3473-3478. Meucci, A., Rossetti, L., Zago, M., Monti, L., Giraffa, G., Carminati, D., & Tidona, F. (2018). Folates biosynthesis by Streptococcus thermophilus during growth in milk. Food Microbiology, 69, 116-122. Mora-Bautista, M. A., de las Nieves Rodriguez-Mendoza, M., Garcia-Cue, J. L., Sanchez-Escudero, J., & Etchevers-Barra, J. D. (2021). Field production of kale (Brassica oleracea var. Acephala) with different nutrition sources. AGRO Productividad, 14, 19-28. Muntean, M. V., Marian, O., Barbieru, V., Cătunescu, G. M., Ranta, O., Drocas, I., & Terhes, S. (2016). High pressure processing in food industry–characteristics and applications. Agriculture and Agricultural Science Procedia, 10, 377-383. Munyaka, A. W., Verlinde, P., Mukisa, I. M., Oey, I., Van Loey, A., & Hendrickx, M. (2010). Influence of Thermal Processing on Hydrolysis and Stability of Folate Poly-γ-glutamates in Broccoli (Brassica oleracea var. italica), Carrot (Daucus carota) and Tomato (Lycopersicon esculentum). Journal of Agricultural and Food Chemistry, 58, 4230-4240. Nazki, F. H., Sameer, A. S., & Ganaie, B. A. (2014). Folate: metabolism, genes, polymorphisms and the associated diseases. Gene, 533, 11-20. Neves, D. A., de Sousa Lobato, K. B., Angelica, R. S., Teixeira Filho, J., de Oliveira, G. P. R., & Godoy, H. T. (2019). Thermal and in vitro digestion stability of folic acid in bread. Journal of Food Composition and Analysis, 84, 103311. Octavia, L., & Choo, W. S. (2017). Folate, ascorbic acid, anthocyanin and colour changes in strawberry (Fragaria× annanasa) during refrigerated storage. Lebensmittel-Wissenschaft & Technologie, LWT-Food Science and Technology, 86, 652-659. Oey, I., Lille, M., Van Loey, A., & Hendrickx, M. (2008). Effect of high-pressure processing on colour, texture and flavour of fruit-and vegetable-based food products: a review. Trends in Food Science & Technology, 19, 320-328. Okunade, O. A., Ghawi, S. K., Methven, L., & Niranjan, K. (2015). Thermal and pressure stability of myrosinase enzymes from black mustard (Brassica nigra L. W.D.J. Koch. var. nigra), brown mustard (Brassica juncea L. Czern. var. juncea) and yellow mustard (Sinapsis alba L. subsp. maire) seeds. Food Chemistry, 187, 485-490. Olaimat, A. N., & Holley, R. A. (2012). Factors influencing the microbial safety of fresh produce: a review. Food Microbiology, 32, 1-19. Osseyi, E. S., Wehling, R. L., & Albrecht, J. A. (1998). Liquid chromatographic method for determining added folic acid in fortified cereal products. Journal of Chromatography A, 826, 235-240. Patring, J. D., Johansson, M. S., Yazynina, E., & Jastrebova, J. A. (2005). Evaluation of impact of different antioxidants on stability of dietary folates during food sample preparation and storage of extracts prior to analysis. Analytica Chimica Acta, 553, 36-42. Pffeifer, C. M., Rogers, L. M., & Gregory, J. F. (1997). Determination of folate in cereal-grain products using tri-enzyme extraction and combined affinity and reversed-phase liquid chromatography. Journal of Agricultural and Food Chemistry, 45, 407-413. Phillips, K. M., Rasor, A. S., Ruggio, D. M., & Amanna, K. R. (2008). Folate content of different edible portions of vegetables and fruits. Nutrition & Food Science, 38, 175-181. Plaza, L., Sánchez-Moreno, C., De Ancos, B., Elez-Martínez, P., Martín-Belloso, O., & Cano, M. P. (2011). Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization. Lebensmittel-Wissenschaft & Technologie, Lebensmittel-Wissenschaft & Technologie, LWT-Food Science and Technology, 44, 834-839. Puthusseri, B., Divya, P., Lokesh, V., & Neelwarne, B. (2013). Salicylic acid-induced elicitation of folates in coriander (Coriandrum sativum L.) improves bioaccessibility and reduces pro-oxidant status. Food Chemistry, 136, 569-575. Rader, J. I., Weaver, C. M., & Angyal, G. (1998). Use of a microbiological assay with tri-enzyme extraction for measurement of pre-fortification levels of folates in enriched cereal-grain products. Food Chemistry, 62, 451-465. Ramos-Parra, P. A., Hernández-Brenes, C., & Díaz de la Garza, R. I. (2021). High Hydrostatic Pressure Modulates the Folate and Ascorbic Acid Accumulation in Papaya (Carica papaya cv. Maradol) Fruit. Food Engineering Reviews, 1-9. Ramos-Parra, P. A., Urrea-López, R., & de la Garza, R. I. D. (2013). Folate analysis in complex food matrices: Use of a recombinant Arabidopsis γ-glutamyl hydrolase for folate deglutamylation. Food Research International, 54, 177-185. Saini, R. K., Nile, S. H., & Keum, Y. S. (2016). Folates: Chemistry, analysis, occurrence, biofortification and bioavailability. Food Research International, 89, 1-13. Satheesh, N., & Workneh Fanta, S. (2020). Kale: Review on nutritional composition, bio-active compounds, anti-nutritional factors, health beneficial properties and value-added products. Cogent Food & Agriculture, 6, 1811048. Seyoum, E., & Selhub, J. (1993). Combined affinity and ion pair column chromatographies for the analysis of food folate. The Journal of Nutritional Biochemistry, 4, 488-494. Shigematsu, T., Murakami, M., Nakajima, K., Uno, Y., Sakano, A., Narahara, Y., & Fujii, T. (2010). Bioconversion of glutamic acid to γ-aminobutyric acid (GABA) in brown rice grains induced by high pressure treatment. Japan Journal of Food Engineering, 11, 189-199. Shrestha, A. K., Arcot, J., & Paterson, J. (2000). Folate assay of foods by traditional and tri-enzyme treatments using cryoprotected Lactobacillus casei. Food Chemistry, 71, 545-552. Smith, A. D., Kim, Y. I., & Refsum, H. (2008). Is folic acid good for everyone? The American Journal of Clinical Nutrition, 87, 517-533. Socha, D. S., DeSouza, S. I., Flagg, A., Sekeres, M., & Rogers, H. J. (2020). Severe megaloblastic anemia: Vitamin deficiency and other causes. Cleveland Clinic Journal of Medicine, 87, 153-164. Stea, T. H., Johansson, M., Jägerstad, M., & Frølich, W. (2007). Retention of folates in cooked, stored and reheated peas, broccoli and potatoes for use in modern large-scale service systems. Food Chemistry, 101, 1095-1107. Švarc, P. L., & Jakobsen, J. (2023). Folate retention in nuts and seeds–Effects of household cooking. Journal of Food Composition and Analysis, 122, 105428. Tabart, J., Pincemail, J., Kevers, C., Defraigne, J. O., & Dommes, J. (2018). Processing effects on antioxidant, glucosinolate, and sulforaphane contents in broccoli and red cabbage. European Food Research and Technology, 244, 2085-2094. Tamura, T., Mizuno, Y., Johnston, K. E., & Jacob, R. A. (1997). Food folate assay with protease, α-amylase, and folate conjugase treatments. Journal of Agricultural and Food Chemistry, 45, 135-139. Thavarajah, P., Abare, A., Basnagala, S., Lacher, C., Smith, P., & Combs Jr, G. F. (2016). Mineral micronutrient and prebiotic carbohydrate profiles of USA-grown kale (Brassica oleracea L. var. acephala). Journal of Food Composition and Analysis, 52, 9-15. Ueno, S., Shigematsu, T., Watanabe, T., Nakajima, K., Murakami, M., Hayashi, M., & Fujii, T. (2010). Generation of free amino acids and γ-aminobutyric acid in water-soaked soybean by high-hydrostatic pressure processing. Journal of Agricultural and Food Chemistry, 58, 1208-1213. Utz, P. B., Serfert, Y., Garcia, A. F., Dieterich, S., Lindauer, R., Bognar, A., & Tauscher, B. (2004). Influence of high‐pressure treatment at 25℃ and 80℃ on folates in orange juice and model media. Journal of Food Science, 69. Uusiku, N. P., Oelofse, A., Duodu, K. G., Bester, M. J., & Faber, M. (2010). Nutritional value of leafy vegetables of sub-Saharan Africa and their potential contribution to human health: A review. Journal of Food Composition and Analysis, 23, 499-509. Vahteristo, L. T., Ollilainen, V., Koivistoinen, P. E., & Varo, P. (1996). Improvements in the analysis of reduced folate monoglutamates and folic acid in food by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 44, 477-482. Van Eylen, D., Bellostas, N., Strobel, B. W., Oey, I., Hendrickx, M., Van Loey, A., & Sørensen, J. C. (2009). Influence of pressure/temperature treatments on glucosinolate conversion in broccoli (Brassica oleraceae L. cv Italica) heads. Food Chemistry, 112, 646-653. Vázquez Gutiérrez, J. L., Hernández Carrión, M., Quiles Chuliá, M., & Hernando Hernando, M. (2014). Influence of storage at 4℃ on the stability of high hydrostatic pressure treated onion. Czech Journal of Food Sciences, 32, 96-101. Verlinde, P., Oey, I., Hendrickx, M., & Van Loey, A. (2008). High-pressure treatments induce folate polyglutamate profile changes in intact broccoli (Brassica oleraceae L. cv. Italica) tissue. Food Chemistry, 111, 220-229. Visentin, M., Diop-Bove, N., Zhao, R., & Goldman, I. D. (2014). The intestinal absorption of folates. Annual Review of Physiology, 76, 251-274. Wang, C., Riedl, K. M., & Schwartz, S. J. (2013). Fate of folates during vegetable juice processing—Deglutamylation and interconversion. Food Research International, 53, 440-448. Wang, C., Riedl, K. M., Somerville, J., Balasubramaniam, V. M., & Schwartz, S. J. (2011). Influence of high-pressure processing on the profile of polyglutamyl 5-MTHF in selected vegetables. Journal of Agricultural and Food Chemistry, 59, 8709-8717. Wang, J., Barba, F. J., Sørensen, J. C., Frandsen, H. B., Sørensen, S., Olsen, K., & Orlien, V. (2018). High pressure effects on myrosinase activity and glucosinolate preservation in seedlings of Brussels sprouts. Food Chemistry, 245, 1212-1217. Wang, Z., Kwan, M. L., Pratt, R., Roh, J. M., Kushi, L. H., Danforth, K. N., & Tang, L. (2020). Effects of cooking methods on total isothiocyanate yield from cruciferous vegetables. Food Science & Nutrition, 8, 5673-5682. Wei, L., Liu, C., Wang, L., Wang, J., Xia, Y., Wang, Y., & Zheng, L. (2021). High-pressure processing combined with microwave heating: A potential approach to affect the quality and enhance sulforaphane production in broccoli florets. ACS Food Science & Technology, 1, 1169-1179. Wilson, D. S., Clifford, C. K., & Clifford, A. J. (1987). Microbiological assay for folic acid-effects of growth medium modification. Journal of Micronutrient Analysis, 55-67. Wittenberg, J. B., Noronha, J. M., & Silverman, M. (1962). Folic acid derivatives in the gas gland of Physalia physalis L. Biochemical Journal, 85, 9. World Health Organization. (2015). Serum and red blood cell folate concentrations for assessing folate status in populations (No. WHO/NMH/NHD/EPG/15.01). World Health Organization. Wu, Y. H., Lin, Y. H., & Wang, C. Y. (2022). High hydrostatic pressure treatment induced microstructure changes and isothiocyanates biosynthesis in kale. Food Chemistry, 383, 132423. Xia, Q., Tao, H., Huang, P., Wang, L., Mei, J., & Li, Y. (2017). Minerals in vitro bioaccessibility and changes in textural and structural characteristics of uncooked pre-germinated brown rice influenced by ultra-high pressure. Food Control, 71, 336-345. Xia, Q., Wang, L., Xu, C., Mei, J., & Li, Y. (2017). Effects of germination and high hydrostatic pressure processing on mineral elements, amino acids and antioxidants in vitro bioaccessibility, as well as starch digestibility in brown rice (Oryza sativa L.). Food Chemistry, 214, 533-542. Xiong, E., Dong, G., Chen, F., Zhang, C., Li, S., Zhang, Y., & Yu, Y. (2021). Formyl tetrahydrofolate deformylase affects hydrogen peroxide accumulation and leaf senescence by regulating the folate status and redox homeostasis in rice. Science China Life Sciences, 64, 720-738. Xu, D., Zuo, J., Fang, Y., Yan, Z., Shi, J., Gao, L., & Jiang, A. (2021). Effect of folic acid on the postharvest physiology of broccoli during storage. Food Chemistry, 339, 127981. Yandamuri, N., Srinivas Nagabattula, K. R., Kurra, S. S., Batthula, S., Nainesha Allada, L. P. S., & Bandam, P. (2013). Comparative study of new trends in HPLC: a review. International Journal of Pharmaceutical Sciences Review and Research, 23, 52-57. Yang, H., Zhang, X., Liu, Y., Liu, L., Li, J., Du, G., & Chen, J. (2021). Synthetic biology-driven microbial production of folates: Advances and perspectives. Bioresource Technology, 324, 124624. Yin, S., Yang, Y., Li, Y., & Sun, C. (2018). Analysis of natural and synthetic folates in pharmaceuticals and foods: a review. Analytical Methods, 10, 9-21. Zhang, J., Cheng, J., Li, Z., Weng, M., Zhang, X., Tang, X., & Pan, Y. (2024). Effects of ultra-high pressure, thermal pasteurization, and ultra-high temperature sterilization on color and nutritional components of freshly-squeezed lettuce juice. Food Chemistry, 435, 137524. Zhang, T., Xue, H., Zhang, B., Zhang, Y., Song, P., Tian, X., & Xi, R. (2012). Determination of folic acid in milk, milk powder and energy drink by an indirect immunoassay. Journal of the Science of Food and Agriculture, 92, 2297-2304.
|