|
[1]Weixing Song, Xing Yin, Di Liu, Weiting Ma, Maoqing Zhang, Xinyuan Li, Ping Cheng, Chunlei Zhang, Jie Wang, Zhong Lin Wang. (2019). A highly elastic self-charging power system for simultaneously harvesting solar and mechanical energy, Nano Energy, Volume 65, 103997, ISSN 2211-2855. [2]Hasan Borke Birgin, Enrique García-Macías, Antonella D’Alessandro, Filippo Ubertini. (2023). Self-powered weigh-in-motion system combining vibration energy harvesting and self-sensing composite pavements, Construction and Building Materials, Volume 369, 130538, ISSN 0950-0618. [3]Truong Thi Kim Tuoi, Nguyen Van Toan, Takahito Ono. (2022). Self-powered wireless sensing system driven by daily ambient temperature energy harvesting, Applied Energy, Volume 311, 118679, ISSN 0306-2619. [4]Yuedong Xie, Jun Long, Pengfei Zhao, Jinkai Chen, Jikui Luo, Zhijie Zhang, Kai Li, Yan Han, Xiaojian Hao, Zhigang Qu, Mingyang Lu, Wuliang Yin. (2018). A self-powered radio frequency (RF) transmission system based on the combination of triboelectric nanogenerator (TENG) and piezoelectric element for disaster rescue/relief, Nano Energy, Volume 54, Pages 331-340, ISSN 2211-2855. [5]M. Wu, K. Yao, D. Li, X. Huang, Y. Liu, L. Wang, E. Song, J. Yu, X. Yu. (2021). Self-powered skin electronics for energy harvesting and healthcare monitoring, Materials Today Energy, Volume 21, 100786, ISSN 2468-6069. [6]Benard S. Mwankemwa, Thembinkosi D. Malevu, Mtabazi G. Sahini, Said A. Vuai. (2022). Effects of vertically aligned ZnO nanorods surface morphology on the ambient-atmosphere fabricated organic solar cells, Results in Materials, Volume 14, 100271, ISSN 2590-048X. [7]Nengchang Xu, Zhaolin Yuan, Biyi Wang, Fengjun Nie, Jianfeng He, Xueyuan Wang. (2022). Significant improvement in the performance of well-aligned ZnO nanowire arrays ultraviolet photodetector by Ga doping, Microelectronic Engineering, Volume 260, 111787, ISSN 0167-9317. [8]Jasleen Kaur, Harminder Singh. (2020). Fabrication and analysis of piezoelectricity in 0D, 1D and 2D Zinc Oxide nanostructures, Ceramics International, Volume 46, Issue 11, Part B, Pages 19401-19407, ISSN 0272-8842. [9]Wang, Z. L. (2011). Nanogenerators for self-powered devices and systems. [10]Tam, K. H., Cheung, C. K., Leung, Y. H., Djurišić, A. B., Ling, C. C., Beling, C. D., ... & Ding, L. (2006). Defects in ZnO nanorods prepared by a hydrothermal method. The Journal of Physical Chemistry B, 110(42), 20865-20871. [11]Sumera Rafique, Ajab Khan Kasi, Aminullah, Jafar Khan Kasi, Muzamil Bokhari, Zafar Shakoor. (2021). Fabrication of Br doped ZnO nanosheets piezoelectric nanogenerator for pressure and position sensing applications, Current Applied Physics, Volume 21, Pages 72-79, ISSN 1567-1739. [12]Y. Manjula, R. Rakesh Kumar, P. Missak Swarup Raju, G. Anil Kumar, T. Venkatappa Rao, A. Akshaykranth, P. Supraja. (2020). Piezoelectric flexible nanogenerator based on ZnO nanosheet networks for mechanical energy harvesting, Chemical Physics, Volume 533, 110699, ISSN 0301-0104. [13]P. Supraja, R. Rakesh Kumar, Siju Mishra, D. Haranath, P. Ravi Sankar, K. Prakash, N. Jayarambabu, T. Venkatappa Rao, K. Uday Kumar. (2022). A simple and low-cost triboelectric nanogenerator based on two dimensional ZnO nanosheets and its application in portable electronics, Sensors and Actuators A: Physical, Volume 335, 113368, ISSN 0924-4247. [14]Avinash Alagumalai, Omid Mahian, K.E.K. Vimal, Liu Yang, Xiao Xiao, Samrand Saeidi, Ping Zhang, Tabassom Saboori, Somchai Wongwises, Zhong Lin Wang, Jun Chen. (2022). A contextual framework development toward triboelectric nanogenerator commercialization, Nano Energy, Volume 101, 107572, ISSN 2211-2855. [15]Dharshana N. Wijesundera, Quark Chen, Ki Bui Ma, Xuemei Wang, Buddhi Tilakaratne, Wei-Kan Chu. (2012). Planar channeling in wurtzite structured ZnO (0001): Anisotropic effects due to the non-centrosymmetric structure, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Volume 281, Pages 77-81, ISSN 0168-583X. [16]Bragg, W. L. (1920). LXII. The crystalline structure of zinc oxide. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39(234), 647-651. [17]Shahid Atiq, M. Tamoor Ansar, Ali Hassan, S. Kumail Abbas, Taswar Iqbal, Mushtaq Aslam, M. Javaid Iqbal, Asif Mahmood. (2020). Interlayer effect on photoluminescence enhancement and band gap modulation in Ga-doped ZnO thin films, Superlattices and Microstructures, Volume 144, 106576, ISSN 0749-6036. [18]A. Mang, K. Reimann, St. Rübenacke. (1995). Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure, Solid State Communications, Volume 94, Issue 4, Pages 251-254, ISSN 0038-1098. [19]Y.Q. Fu, J.K. Luo, X.Y. Du, A.J. Flewitt, Y. Li, G.H. Markx, A.J. Walton, W.I. Milne. (2010). Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review, Sensors and Actuators B: Chemical, Volume 143, Issue 2, Pages 606-619, ISSN 0925-4005. [20]Matheus Horstmann Fernandes, Bruno Ramos, Andre Luiz da Silva, Douglas Gouvêa. (2023). Chloride-doped ZnO thin films prepared by spray pyrolysis: Effects on microstructural, optical, and photocatalytic properties, Micro and Nanostructures, Volume 177, 207550, ISSN 2773-0123. [21]Qiang Li, Yiqing Chen, Linbao Luo, Li Wang, Yongqiang Yu, Lei Zhai. (2013). Photoluminescence and wetting behavior of ZnO nanoparticles/nanorods array synthesized by thermal evaporation, Journal of Alloys and Compounds, Volume 560, Pages 156-160, ISSN 0925-8388. [22]Abdelhafid Mahroug, Ibrahim Mahroug, Sarra Berra, Djamel Allali, Samir Hamrit, Abdelhamid Guelil, Abdelhalim Zoukel, Shafi Ullah. (2023). Optical, luminescence, photocurrent and structural properties of sol-gel ZnO fibrous structure thin films for optoelectronic applications: A combined experimental and DFT study, Optical Materials, Volume 142, 114043, ISSN 0925-3467. [23]Hajara Puthiyottil, Priya Rose Thankamani, Kachirayil Joseph Saji. (2023). Exploring the effects of substrate and substrate temperature on the properties of radio frequency magnetron sputtered ZnO thin films, Materials Today Communications, Volume 36, 106455, ISSN 2352-4928. [24]Zeping Li, Xiong Yu, Yunhao Zhu, Sisi Liu, Xiaoyan Wen, Haifei Lu, Cong Wang, Xiao Li, Ming-Yu Li, Yingping Yang. (2022). High performance ZnO quantum dot (QD)/ magnetron sputtered ZnO homojunction ultraviolet photodetectors, Applied Surface Science, Volume 582, 152352, ISSN 0169-4332. [25]Srinivasan Mohan, Shanmugavel Sudarsan, Elumalai Parthiban, Selvam Guhanathan, S.V.S. Prasad. (2023). Synthesis and characterization of binding interaction of ZnO nanoparticles with organic compounds, Materials Today: Proceedings, ISSN 2214-7853. [26]Hongye Guan, Guangjie Mao, Tianyan Zhong, Tianming Zhao, Shan Liang, Lili Xing, Xinyu Xue. (2021). A self-powered UV photodetector based on the hydrovoltaic and photoelectric coupling properties of ZnO nanowire arrays, Journal of Alloys and Compounds, Volume 867, 159073, ISSN 0925-8388. [27]Charles Opoku, Abhishek Singh Dahiya, Christopher Oshman, Frederic Cayrel, Guylaine Poulin-Vittrant, Daniel Alquier, Nicolas Camara. (2015). Fabrication of ZnO Nanowire Based Piezoelectric Generators and Related Structures, Physics Procedia, Volume 70, Pages 858-862, ISSN 1875-3892. [28]Majid S. Al-Ruqeishi, Tariq Mohiuddin, Butheina Al-Habsi, Fatma Al-Ruqeishi, Ahmed Al-Fahdi, Ahmed Al-Khusaibi. (2019). Piezoelectric nanogenerator based on ZnO nanorods, Arabian Journal of Chemistry, Volume 12, Issue 8, Pages 5173-5179, ISSN 1878-5352. [29]Goli Nagaraju, Yeong Hwan Ko, Jae Su Yu. (2015). Effect of diameter and height of electrochemically-deposited ZnO nanorod arrays on the performance of piezoelectric nanogenerators, Materials Chemistry and Physics, Volumes 149–150, Pages 393-399, ISSN 0254-0584. [30]Hao Wu, Zhaolin Yuan, Biyi Wang, Fengjun Nie, Jianfeng He, Xueyuan Wang, Lin Liu. (2021). Synthesis of single-crystalline ZnO nanoflowers for a superhigh-sensitivity ultraviolet photodetector application, Optical Materials, Volume 122, Part B, 111683, ISSN 0925-3467. [31]Anitesh Anand, Sreya Mittal, Velpuri Leeladevi, Debasis De. (2023). Nanoflower shaped ZnO photoanode and natural dye sensitizer based solar cell fabrication, Materials Today: Proceedings, Volume 72, Part 1, Pages 227-231, ISSN 2214-7853. [32]Yijun Zhang, Ming Liu, Wei Ren, Zuo-Guang Ye. (2015). Well-ordered ZnO nanotube arrays and networks grown by atomic layer deposition, Applied Surface Science, Volume 340, Pages 120-125, ISSN 0169-4332. [33]T. Marimuthu, N. Anandhan, R. Thangamuthu. (2018). Electrochemical synthesis of one-dimensional ZnO nanostructures on ZnO seed layer for DSSC applications, Applied Surface Science, Volume 428, Pages 385-394, ISSN 0169-4332. [34]Bigelow, W. C., Pickett, D. L., & Zisman, W. A. (1946). Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. Journal of Colloid Science, 1(6), 513-538. [35]Sagiv, J. (1980). Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society, 102(1), 92-98. [36]Nuzzo, R. G., & Allara, D. L. (1983). Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 105(13), 4481-4483. [37]Esplandiu, M. J., Hagenström, H., & Kolb, D. M. (2001). Functionalized self-assembled alkanethiol monolayers on Au (111) electrodes: 1. Surface structure and electrochemistry. Langmuir, 17(3), 828-838. [38]Kudelski, A. (2003). Structures of monolayers formed from different HS—(CH2)2—X thiols on gold, silver and copper: comparitive studies by surface‐enhanced Raman scattering. Journal of Raman Spectroscopy, 34(11), 853-862. [39]Bhushan, B. (2001). Modern tribology handbook. 1. Principles of tribology. CRC press. [40]Carpick, R. W., & Salmeron, M. (1997). Scratching the surface: Fundamental investigations of tribology with atomic force microscopy. Chemical reviews, 97(4), 1163-1194. [41]Sagiv, J. (1980). Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society, 102(1), 92-98. [42]Silberzan, P., Leger, L., Ausserre, D., & Benattar, J. J. (1991). Silanation of silica surfaces. A new method of constructing pure or mixed monolayers. Langmuir, 7(8), 1647-1651. [43]Bierbaum, K., Grunze, M., Baski, A. A., Chi, L. F., Schrepp, W., & Fuchs, H. (1995). Growth of self-assembled n-alkyltrichlorosilane films on Si (100) investigated by atomic force microscopy. Langmuir, 11(6), 2143-2150. [44]Bu, S., Cui, C., Wang, Q., & Bai, L. (2008). Growth of ZnO nanowires in aqueous solution by a dissolution-growth mechanism. Journal of Nanomaterials, 2008, 43. [45]Li, H., Zhang, X., Zhu, Y., Li, R., Chen, H., Gao, P., ... & Li, Q. (2014). Hydrothermal deposition of a zinc oxide nanorod array on a carbon nanotube film as a piezoelectric generator. RSC Advances, 4(82), 43772-43777. [46]G. Pineda-Hernández, A. Escobedo-Morales, U. Pal, E. Chigo-Anota. (2012). Morphology evolution of hydrothermally grown ZnO nanostructures on gallium doping and their defect structures, Materials Chemistry and Physics, Volume 135, Issues 2–3, Pages 810-817, ISSN 0254-0584. [47]Ohring, M. (1992). Materials science of thin films. Applied Optics, 31(34), 7162. [48]Sze, S. M. (2008). Semiconductor devices: physics and technology. John Wiley & Sons. [49]Schroder, D. K. (2006). Semiconductor material and device characterization. John Wiley & Sons. [50]Rivlin, R. S., & Thomas, A. G. (1953). Rupture of rubber. I. Characteristic energy for tearing. Journal of polymer science, 10(3), 291-318. [51]Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771), 242-246.
|