|
[1]S. Li, J. J. Li, Y. Q. Fu, and R. B. Zhang, "Interaction between plasma jet and silicone rubber covered by porous inorganic contaminants: Surface hydrophobicity or hydrophilicity?," High Voltage, vol. 7, no. 6, pp. 1023-1033, Dec 2022, doi: 10.1049/hve2.12122. [2]C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B-Atomic Spectroscopy, vol. 61, no. 1, pp. 2-30, Jan 2006, doi: 10.1016/j.sab.2005.10.003. [3]V. Rat, F. Mavier, and J. F. Coudert, "Electric Arc Fluctuations in DC Plasma Spray Torch," Plasma Chem. Plasma Process., vol. 37, no. 3, pp. 549-580, May 2017, doi: 10.1007/s11090-017-9797-7. [4]U. Kogelschatz, "Filamentary, patterned, and diffuse barrier discharges," IEEE Trans. Plasma Sci., vol. 30, no. 4, pp. 1400-1408, Aug 2002, doi: 10.1109/tps.2002.804201. [5]H. Y. Chen and W. H. Yang, "Chromium nitride thin films prepared using atmospheric pressure plasma process," (in English), Thin Solid Films, Article vol. 706, p. 6, Jul 2020, Art no. 138095, doi: 10.1016/j.tsf.2020.138095. [6]H. Y. Chen, W. J. Yang, and K. P. Chang, "Characterization of delafossite-CuCrO2 thin films prepared by post-annealing using an atmospheric pressure plasma torch," (in English), Appl. Surf. Sci., Article vol. 258, no. 22, pp. 8775-8779, Sep 2012, doi: 10.1016/j.apsusc.2012.05.090. [7]H. Y. Chen and J. R. Fu, "Delafossite-CuFeO2 thin films prepared by atmospheric pressure plasma annealing," (in English), Mater. Lett., Article vol. 120, pp. 47-49, Apr 2014, doi: 10.1016/j.matlet.2014.01.017. [8]H. Y. Chen, Y. C. Lin, and J. S. Lee, "Crednerite-CuMnO2 thin films prepared using atmospheric pressure plasma annealing," (in English), Appl. Surf. Sci., Article vol. 338, pp. 113-119, May 2015, doi: 10.1016/j.apsusc.2015.02.112. [9]P. Schaaf, "Laser nitriding of metals," Progress in Materials Science, vol. 47, no. 1, pp. 1-161, 2002, doi: 10.1016/s0079-6425(00)00003-7. [10]R. Ichiki, H. Nagamatsu, Y. Yasumatsu, T. Iwao, S. Akamine, and S. Kanazawa, "Nitriding of steel surface by spraying pulsed-arc plasma jet under atmospheric pressure," Mater. Lett., vol. 71, pp. 134-136, Mar 2012, doi: 10.1016/j.matlet.2011.12.054. [11]H. Nagamatsu, R. Ichiki, Y. Yasumatsu, T. Inoue, M. Yoshida, S. Akamine, and S. Kanazawa, "Steel nitriding by atmospheric-pressure plasma jet using N-2/H-2 mixture gas," Surf. Coat. Technol., vol. 225, pp. 26-33, Jun 2013, doi: 10.1016/j.surfcoat.2013.03.012. [12]J. Y. Guo, Y. L. Kuo, and H. P. Wang, "A Facile Nitriding Approach for Improved Impact Wear of Martensitic Cold-Work Steel Using H-2/N-2 Mixture Gas in an AC Pulsed Atmospheric Plasma Jet," (in English), Coatings, Article vol. 11, no. 9, p. 15, Sep 2021, Art no. 1119, doi: 10.3390/coatings11091119. [13]F. Borgioli, A. Fossati, E. Galvanetto, and T. Bacci, "Glow-discharge nitriding of AISI 316L austenitic stainless steel: influence of treatment temperature," Surf. Coat. Technol., vol. 200, no. 7, pp. 2474-2480, Dec 2005, doi: 10.1016/j.surfcoat.2004.07.110. [14]C. X. Li and T. Bell, "Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5% NaCl and 1% HCl aqueous solutions," Corrosion Science, vol. 48, no. 8, pp. 2036-2049, Aug 2006, doi: 10.1016/j.corsci.2005.08.011. [15]S. C. Mishra, B. B. Nayak, and B. C. Mohanty, "Arc plasma nitriding of low carbon steel," Surf. Coat. Technol., vol. 145, no. 1-3, pp. 24-30, Aug 2001, doi: 10.1016/s0257-8972(01)01291-9. [16]T. Takahashi, J. Burghaus, D. Music, R. Dronskowski, and J. M. Schneider, "Elastic properties of gamma '-Fe4N probed by nanoindentation and ab initio calculation," Acta Materialia, vol. 60, no. 5, pp. 2054-2060, Mar 2012, doi: 10.1016/j.actamat.2011.12.051. [17]L. F. Zagonel, C. A. Figueroa, R. Droppa, and F. Alvarez, "Influence of the process temperature on the steel microstructure and hardening in pulsed plasma nitriding," (in English), Surf. Coat. Technol., Article vol. 201, no. 1-2, pp. 452-457, Sep 2006, doi: 10.1016/j.surfcoat.2005.11.137.
|