[1]Liu Yu, Zhang Chuan-Chao, Zhang Xie-Yi, Huang Yuan-Chun, Understanding Grain Refinement of Sc Addition in a Zr Containing Al-Zn-Mg-Cu Aluminum Alloy from Experiments and First-Principles, Intermetallics, 123, August 2020, 106823.
[2]Zhang Wei, Xing Yuan, Jia Zhi-Hong, Yang Xiao-Fang, Liu Qing, Zhu Chang-Luo, Effect of Minor Sc and Zr Addition on Microstructure and Properties of Ultra-High Strength Aluminum Alloy, Transactions of Nonferrous Metals Society of China, 24(12), December 2014, pp.3866-3871.
[3]A.M. Samuel, S.A. Alkahtani, H.W. Doty, F.H. Samuel, Role of Zr and Sc Addition in Controlling The Microstructure and Tensile Properties of Aluminum–Copper Based Alloys, Materials & Design, 88, 25 December 2015, pp.1134-1144.
[4]P. Sepehrband, R. Mahmud, F. Khomamizadeh, Effect of Zr Addition on The Aging Behavior of A319 Aluminum Cast Alloy, Scripta Materialia, 52(4), February 2005, pp.253-257.
[5]H.A. Elhadari, H.A. Patel, D.L. Chen, W. Kasprzak, Tensile and Fatigue Properties of a Cast Aluminum Alloy with Ti, Zr and V Additions, Materials Science and Engineering: A, 528(28), 25 October 2011, pp.8128-8138.
[6]W. Haupin, Aluminum Production and Refining, Encyclopedia of Materials: Science and Technology (Second Edition), 2001, pp.132-141.
[7]Alton T. Tabereaux, Ray D. Peterson, Aluminum Production, Treatise on Process Metallurgy, 3, 2014, pp.839-917.
[8]E.A. StarkeJr., Aluminum Alloys: Properties and Applications, Encyclopedia of Materials: Science and Technology (Second Edition), 2001, pp.114-116.
[9]J.C. Benedyk, Aluminum Alloys for Lightweight Automotive Structures, Materials, Design and Manufacturing for Lightweight Vehicles, Woodhead Publishing Series in Composites Science and Engineering, 2010, pp.79-113.
[10]Aluminum Association, International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys (Aluminum Association, 2009).
[11]Xu Xiaoke, Peng Xiaodong, Xie Weidong, Zhang Anqin, Reserch on Strengthening of Casting Aluminum Alloy, College of Mechanical Engineering, Chongqing University, Chongqing 400044.
[12]John E. Hatch, Aluminum: Properties and Physical Metallurgy, 1984, pp.58-104.
[13]張楚均,摩擦攪拌複合銲接對鋁合金的顯微組織及腐蝕特性之影響,國立虎尾科技大學材料科學與工程系材料科學與綠色能源工程碩士班碩士論文,雲林縣,2020。[14]Reza Abbaschian, Lara Abbaschian, Robert E. Reed-Hill, Physical Metallurgy Principles, Cengage Learning, 2009, pp.262.
[15]William D. Callister Jr., David G. Rethwisch, Materials Science and Engineering an Introduction, John Wiley & Sons, Inc., pp.212-440.
[16]R. E. Smallman, A. H. W. Ngan, Physical Metallurgy and Advanced Materials, 2007.
[17]F.C. Campbell, Elements of Metallurgy and Engineering Alloys, 2008, pp.279-302.
[18]I.J. Polmear, Aluminum Alloys-A Century of Age Hardening, Materials Forum, 28, 2004.
[19]D. Maisonnette, M. Suery, D. Nelias, P. Chaudet, T. Epicierc, Effects of Heat Treatments on The Microstructure and Mechanical Properties of a 6061 Aluminum Alloy, Materials Science and Engineering: A, 528(6), 15 March 2011, pp.2718-2724.
[20]Aytekin Polat, Mustafa Avsar, Fahrettin Ozturk, Effects of Artificial-Aging Temperature and Time on The Mechanical Properties and Apringback Behavior of AA6061, 2014.
[21]Chen Zhi-Gou, Zhou Xain, Shu Jun, Huang Yu-Jin, Progress in Research on Microalloying of Rare Earth in Aluminum Alloy, Mining and metallurgical engineering, 30(2), April 2010.
[22]Wang Mengyun, Study on Effect of Rare Earth in Aluminum Alloys, Foundry Technology, 34(3), Mar. 2013.
[23]Xiao Dai-Hong, Chen Kang-Hua, Song Min, Effect of Cerium Addition on Precipitation and Microstructure of Al-Cu-Mg-Mn-Ag Alloys, The Chinese Journal of Nonferrous Metals, 17(3), May 2007.
[24]周承恩、史志銘、韓英、李競艷,富士混合稀土及鍶對鑄鋁A356組織和力學性能的影響,內蒙古工業大學學報,第33卷,第1期,2014。
[25]孫長明、史志銘、李志芬,利用富士混合稀土改善工業純鋁中富鐵相形貌的研究,中國稀土學報,第25卷,第3期,2007年6月。
[26]張冠星、馬全倉、關紹康、陳興梓、李雙喜、趙晶張冠星、馬全倉、關紹康、陳興梓、李雙喜、趙晶,富士混合稀土對5052鋁合金流動性及淨化效果的影響,材料熱處理學報,第29卷,第4期,2008年8月。
[27]Hu Guiyun, Zhu Changjun, Xu Daofen, Dong Pengxuan, Chen Kanghua, Journal of Rare Earths, 39(2), February 2021, pp.208-216.
[28]Yang Liu, Richard A. Michi, David C. Dunand, Cast Near-Eutectic Al-12.5 wt% Ce Alloy with High Coarsening and Creep Resistance, Materials Science and Engineering:A, 767, 8 November 2019, 138440.
[29]Frank Czerwinski, Thermal Stability of Aluminum–Cerium Binary Alloys Containing The Al-Al_11 Ce_3 Eutectic, Materials Science and Engineering:A, 809, 30 March 2021, 140973.
[30]Zachary C Sims, O.R. Rios, David Weiss, P.E.A. Turchi, A. Perron, Jonathan R.I. Lee, Li T. Tian, Joshua A. Hammons, Michael Bagge-Hansen, Trevor M. Willey, K. An1, Yan Chen, A.H. King, S.K. McCall, High Performance Aluminum-Cerium Alloys for HighTemperature Applications, Materials Horizons, 4(6), November 2017, pp.935–1202.
[31]Mohammed A. Amin, Nader El-Bagoury, Murat Saracoglu, Mohamed Ramadan, Electrochemical and Corrosion Behavior of Cast Re-Containing Inconel 718 Alloys in Sulphuric Acid Solutions and The Effect of Cl^-, International Journal of Electrochemical Science ,9(9), 2014, pp.5352-5374.