|
[1]ESG永續台灣今周刊“臺灣離岸風電產業鏈里程碑 先進華斯量產機艙罩與鼻錐罩.” https://reurl.cc/nD3m3d (accessed Aug. 02, 2023). [2]P.-C. Chang, R.-Y. Yang, and C.-M. Lai, “Potential of Offshore Wind Energy and Extreme Wind Speed Forecasting on the West Coast of Taiwan,” vol. 8, pp. 1685–1700, 2015, doi: 10.3390/en8031685. [3]T. J. Chang, Y. T. Wu, H. Y. Hsu, C. M. Liao, and C. R. Chu, “Assessment of wind characteristics and wind turbine characteristics in Taiwan,” Renew Energy, vol. 28, no. 6, pp. 851–871, May 2003, doi: 10.1016/S0960-1481(02)00184-2. [4]J. P. Jensen and K. Skelton, “Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy,” Renewable and Sustainable Energy Reviews, vol. 97, pp. 165–176, Dec. 2018, doi: 10.1016/J.RSER.2018.08.041. [5]K. Debnath, I. Singh, A. Dvivedi, and P. Kumar, “Natural Fibre-Reinforced Polymer Composites for Wind Turbine Blades: Challenges and Opportunities.” [Online]. Available: www.academicpub.org/amsa/ [6]A. V. Pradeep, S. V. Satya Prasad, L. V. Suryam, and P. Prasanna Kumari, “A comprehensive review on contemporary materials used for blades of wind turbine,” Mater Today Proc, vol. 19, pp. 556–559, Jan. 2019, doi: 10.1016/J.MATPR.2019.07.732. [7]“行政院原子能委員會 委託研究計畫研究報告 風力發電機葉片纖維複合材料高強度輕量化之研究.”(Dec. 2012) [8]“CompositesLab | All You Need to Know About Composites.” https://compositeslab.com/ (accessed May 04, 2023). [9]L. C. Hollaway, “A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties,” Constr Build Mater, vol. 24, no. 12, pp. 2419–2445, Dec. 2010, doi: 10.1016/J.CONBUILDMAT.2010.04.062. [10]H. Pan, D. Yang, W. Qu, J. Li, and Y. Ke, “Process-dependent wrinkle formation for steered tow during automated fiber placement: Modeling and experimental verification,” Thin-Walled Structures, vol. 180, p. 109928, Nov. 2022, doi: 10.1016/J.TWS.2022.109928. [11]L. Mishnaevsky, K. Branner, H. N. Petersen, J. Beauson, M. McGugan, and B. F. Sørensen, “Materials for wind turbine blades: An overview,” Materials, vol. 10, no. 11, Nov. 2017, doi: 10.3390/MA10111285. [12]M. Yun, T. Carella, P. Simacek, and S. Advani, “Stochastic modeling of through the thickness permeability variation in a fabric and its effect on void formation during Vacuum Assisted Resin Transfer Molding,” Compos Sci Technol, vol. 149, pp. 100–107, Sep. 2017, doi: 10.1016/J.COMPSCITECH.2017.06.016. [13]H. S. Sas, P. Šimáček, and S. G. Advani, “A methodology to reduce variability during vacuum infusion with optimized design of distribution media,” Compos Part A Appl Sci Manuf, vol. 78, pp. 223–233, Nov. 2015, doi: 10.1016/J.COMPOSITESA.2015.08.011. [14]J. M. Lawrence, P. Simacek, P. Frey, P. Bhat, T. Gebauer, and S. G. Advani, “The compaction behavior of fibrous preform materials during the VARTM infusion,” AIP Conf Proc, vol. 907, pp. 1039–1045, 2007, doi: 10.1063/1.2729651. [15]B. Yenilmez, M. Senan, and E. Murat Sozer, “Variation of part thickness and compaction pressure in vacuum infusion process,” Compos Sci Technol, vol. 69, no. 11–12, pp. 1710–1719, Sep. 2009,doi: 10.1016/J.COMPSCITECH.2008.05. 009. [16]Y. Geng, J. Jiang, and N. Chen, “Local impregnation behavior and simulation of non-crimp fabric on curved plates in vacuum assisted resin transfer molding,” Compos Struct, vol. 208, pp. 517- 524, Jan. 2019,doi: 10.1016/J.COMPSTRUCT. 2018.10.054. [17]H. L. Friedman, R. A. Johnson, B. Miller, D. R. Salem, and R. S. Parnas, “Forced in-plane flow through complex deformable structures: Influence of an imposed curve,” Polym Compos, vol. 18, no. 5, pp. 663–671, 1997, doi: 10.1002/PC.10318. [18]S. Bickerton, E. M. Sozer, P. J. Graham, and S. G. Advani, “Fabric structure and mold curvature effects on preform permeability and mold filling in the RTM process. Part I. Experiments,” Compos Part A Appl Sci Manuf, vol. 31, no. 5, pp. 423–438, May 2000, doi: 10.1016/S1359-835X(99)00087-1. [19]Y. Li, M. Li, Y. Gu, and Z. Zhang, “Numerical and experimental study on the effect of lay-up type and structural elements on thickness uniformity of L-shaped laminates,” Applied Composite Materials, vol. 16, no. 2, pp. 101–115, Apr. 2009, doi: 10.1007/S10443-009-9080-Z/FIGURES/14. [20]A. G. Prodromou and J. Chen, “On the relationship between shear angle and wrinkling of textile composite preforms,” Compos Part A Appl Sci Manuf, vol. 28, no. 5, pp. 491–503, Jan. 1997, doi: 10.1016/S1359-835X(96)00150-9. [21]P. Boisse, N. Hamila, E. Vidal-Sallé, and F. Dumont, “Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses,” Compos Sci Technol, vol. 71, no. 5, pp. 683–692, Mar. 2011, doi: 10.1016/J.COMPSCITECH.2011.01.011. [22]P. Boisse, N. Hamila, and A. Madeo, “Modelling the development of defects during composite reinforcements and prepreg forming,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2071, Jul. 2016, doi: 10.1098/RSTA.2015.0269. [23]A. S. Tam and T. G. Gutowski, “The kinematics for forming ideal aligned fibre composites into complex shapes,” Composites Manufacturing, vol. 1, no. 4, pp. 219–228, Dec. 1990, doi: 10.1016/0956-7143(90)90044-W. [24]J. Wang, R. Paton, and J. R. Page, “The draping of woven fabric preforms and prepregs for production of polymer composite components,” Compos Part A Appl Sci Manuf, vol. 30, no. 6, pp. 757–765, Jun. 1999, doi: 10.1016/S1359-835X(98)00187-0. [25]B. Zhu, T. X. Yu, J. Teng, and X. M. Tao, “Theoretical Modeling of Large Shear Deformation and Wrinkling of Plain Woven Composite”, doi: 10.1177/0021998308098237. [26]P. Harrison, F. Abdiwi, Z. Guo, P. Potluri, and W. R. Yu, “Characterising the shear–tension coupling and wrinkling behaviour of woven engineering fabrics,” Compos Part A Appl Sci Manuf, vol. 43, no. 6, pp. 903–914, Jun. 2012, doi: 10.1016/J.COMPOSITESA.2012.01.024. [27]H. Shen, L. Yao, X. Legrand, and P. Wang, “Characterization of wrinkle morphologies by surface waviness evaluation method during deep forming of multilayer composite preforms,” Compos Struct, vol. 306, p. 116586, Feb. 2023, doi: 10.1016/J.COMPSTRUCT.2022.116586. [28]M. M. Salem, E. De Luycker, M. Fazzini, and P. Ouagne, “Experimental, analytical and numerical investigation to prevent the tow buckling defect during fabric forming,” Compos Part A Appl Sci Manuf, vol. 125, p. 105567, Oct. 2019, doi: 10.1016/J.COMPOSITESA.2019.105567. [29]K. Çinar and N. Ersoy, “Effect of fibre wrinkling to the spring-in behaviour of L-shaped composite materials,” Compos Part A Appl Sci Manuf, vol. 69, pp. 105–114, Feb. 2015, doi: 10.1016/J.COMPOSITESA.2014.10.025. [30]T. Tamagawa, Y. Mori, and S. Minakuchi, “Consolidation mechanism of composite corners cured on convex and concave tools,” Compos Part A Appl Sci Manuf, vol. 169, p. 107500, Jun. 2023, doi: 10.1016/J.COMPOSITESA.2023.107500. [31]N. Ersoy, K. Potter, M. R. Wisnom, and M. J. Clegg, “An experimental method to study the frictional processes during composites manufacturing,” Compos Part A Appl Sci Manuf, vol. 36, no. 11, pp. 1536–1544, Nov. 2005, doi: 10.1016/J.COMPOSITESA.2005.02.010.
|