|
1. Yagci, Y., S. Jockusch, and N.J. Turro, Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules, 2010. 43(15): p. 6245-6260. 2. Peterson, G.I., et al., Production of materials with spatially-controlled cross-link density via vat photopolymerization. ACS applied materials & interfaces, 2016. 8(42): p. 29037-29043. 3. Zou, J., et al., Clicking Well-Defined Biodegradable Nanoparticles and Nanocapsules by UV-Induced Thiol-Ene Cross-Linking in Transparent Miniemulsions. Advanced Materials, 2011. 23(37): p. 4274-4277. 4. Rydholm, A.E., C.N. Bowman, and K.S. Anseth, Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial. Biomaterials, 2005. 26(22): p. 4495-506. 5. Shih, H. and C.C. Lin, Cross-linking and degradation of step-growth hydrogels formed by thiol-ene photoclick chemistry. Biomacromolecules, 2012. 13(7): p. 2003-12. 6. Lovelady, E., et al., Preparation of emulsion-templated porous polymers using thiol–ene and thiol–yne chemistry. Polymer Chemistry, 2011. 2(3): p. 559-562. 7. Konkolewicz, D., et al., Hyperbranched alternating block copolymers using thiol–yne chemistry: materials with tuneable properties. Chemical Communications, 2011. 47(1): p. 239-241. 8. Juzenas, P., et al., Noninvasive fluorescence excitation spectroscopy during application of 5-aminolevulinic acid in vivo. Photochem Photobiol Sci, 2002. 1(10): p. 745-8. 9. Stepuk, A., et al., Use of NIR light and upconversion phosphors in light-curable polymers. Dent Mater, 2012. 28(3): p. 304-11. 10. Zivic, N., et al., Novel naphthalimide–amine based photoinitiators operating under violet and blue LEDs and usable for various polymerization reactions and synthesis of hydrogels. Polymer Chemistry, 2016. 7(2): p. 418-429. 11. Chen, Y., et al., Visible light curing of bisphenol-A epoxides and acrylates photoinitiated by (η6-benzophenone)(η5-cyclopentadienyl) iron hexafluorophosphate. Journal of Polymer Research, 2011. 18(6): p. 1425-1429. 12. Telitel, S., et al., Photopolymerization of Cationic Monomers and Acrylate/Divinylether Blends under Visible Light Using Pyrromethene Dyes. Macromolecules, 2012. 45(17): p. 6864-6868. 13. Balta, D.K., et al., Thioxanthone–Diphenyl Anthracene: Visible Light Photoinitiator. Macromolecules, 2012. 45(1): p. 119-125. 14. Dadashi-Silab, S., et al., Microporous Thioxanthone Polymers as Heterogeneous Photoinitiators for Visible Light Induced Free Radical and Cationic Polymerizations. Macromolecules, 2014. 47(14): p. 4607-4614. 15. Peng, H., et al., Monochromatic Visible Light “Photoinitibitor”: Janus-Faced Initiation and Inhibition for Storage of Colored 3D Images. Journal of the American Chemical Society, 2014. 136(25): p. 8855-8858. 16. Aguirre-Soto, A., et al., Visible-Light Organic Photocatalysis for Latent Radical-Initiated Polymerization via 2e–/1H+ Transfers: Initiation with Parallels to Photosynthesis. Journal of the American Chemical Society, 2014. 136(20): p. 7418-7427. 17. Lalevée, J., H. Mokbel, and J.-P. Fouassier, Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources. Molecules, 2015. 20(4). 18. Fouassier, J.-P. and J. Lalevée, Photoinitiators for polymer synthesis: scope, reactivity, and efficiency. 2012: John Wiley & Sons. 19. Zhang, J., et al., Design of Novel Photoinitiators for Radical and Cationic Photopolymerizations under Near UV and Visible LEDs (385, 395, and 405 nm). Macromolecules, 2014. 47(9): p. 2811-2819. 20. Muramoto, Y., M. Kimura, and S. Nouda, Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp. Semiconductor Science and Technology, 2014. 29(8): p. 084004. 21. Morita, D., et al., High output power 365 nm ultraviolet light emitting diode of GaN-free structure. Japanese journal of applied physics, 2002. 41(12B): p. L1434. 22. Alger, M., Polymer science dictionary. 1996: Springer Science & Business Media. 23. 王德海, 紫外光固化材料-理論與應用. 北京科學出版社. 2001. 106-140. 24. 周洺委, 陽離子型紫外光硬化樹酯之研究. 2007, 國立台北科技大學有機高分子所 25. 黃錫裕, UV Curable PU 樹酯之光硬化. 2004, 國立台北科技大學有機高分子所. 26. 何志松、王維廷, 探討聚酯壓克力樹脂配方對性質之影響. 2017, 大葉大學: 科學與工程技術期刊. p. 33-43. 27. Odian, G., Principles of polymerization. 2004: John Wiley & Sons. 28. 王心麟, 鏈轉移劑與活性稀釋劑對UV光固化塗料物性之研究. 2017, 國立台北科技大學化學工程與材料工程所. 29. 楊修銘, 以丙烯酸酯製備陽離子型紫外光硬化塗料之研究. 2016, 國立高雄應用科技大學化學工程與材料工程系所. 30. Fik, C., J. Klee, and M. Maier, Dyes and Chromophores in Polymer Science. 2015. p. 123-138. 31. Studer, K., et al., Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I. Progress in Organic Coatings, 2003. 48(1): p. 92-100. 32. Studer, K., et al., Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting: Part II. Progress in Organic Coatings, 2003. 48(1): p. 101-111. 33. Kecici, Z., S. Babaoglu, and G. Temel, Methacrylated benzophone as triple functional compound for the synthesis of partially crosslinked copolymers. Progress in Organic Coatings, 2018. 115: p. 138-142. 34. Aydin, M., et al., “Mono” and “bifunctional” aromatic esterificated benzophenone photoinitiators for free radical polymerization. Polymer Bulletin, 2015. 72(2): p. 309-322. 35. Fouassier, J.P. and J. Lalevée, Three-component photoinitiating systems: towards innovative tailor made high performance combinations. Rsc Advances, 2012. 2(7): p. 2621-2629. 36. Andrzejewska, E., et al., Heteroaromatic thiols as co-initiators for type II photoinitiating systems based on camphorquinone and isopropylthioxanthone. Macromolecules, 2006. 39(11): p. 3777-3785. 37. Davidson, R.S., The chemistry of photoinitiators—some recent developments. Journal of Photochemistry and Photobiology A: Chemistry, 1993. 73(2): p. 81-96. 38. Ma, X., et al., Multicomponent photoinitiating systems containing arylamino oxime ester for visible light photopolymerization. Progress in Organic Coatings, 2019. 135: p. 517-524. 39. Griesser, M., Mechanistic investigations of novel photoinitiators for radical polymerization. RN:45093148. 40. Liu, S., et al.,Design of photoinitiating systems based on the chalcone-anthracene scaffold for LED cationic photopolymerization and application in 3D printing. European Polymer Journal Volume 147, 15 March 2021, 110300. 41. Jing, C., Ding, G., Qin, X., Peng, G., Huang, H., Wang, J., Zhang, S., Li, H., Luo, Z., Gao, F. New near UV photoinitiators containing benzophenone part for photoinitiating polymerization of methyl methacrylate. Progress in Organic Coatings, 2017. 110: p. 150-161. 42. Li Jun, Li Miaozhen, Song Huaihai, Yang Yongyuan, Photopolymerization Initiated by Dimethylaminochalcone/diphenyliodonium salt combination system sensitive to visible light. Polymer Science: English Edition, 1993, No. 2 43. Wang, K., Nie, J. Spirobifluorene-Bridged Donor/Acceptor Dye for Organic Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology A: Chemistry, 2009. 204: p.7-12. 44. Wang, K., Ma, G., Yin, R., Nie, J., Tu, Q. Benzophenone1,3-dioxane as a free radial initiator for photopolymerization. Materials Chemistry and Physics, 2010. 124: p.453-457. 45. Yang, J., Shi, S., Xu, F., Nie, J. Synthesis and photopolymerization kinetics of benzophenone sesamol one-component photoinitiator. Photochemical & Photobiological Sciences, 2013. 12: p.323-329. 46. Temel, G., Enginol, B., Aydin, M., Balta, D. K., Arsu, N. Photopolymerization and photophysical properties of amine linked benzophenone photoinitiator for free radical polymerization. Journal of Photochemistry and Photobiology A: Chemistry, 2011. 219: p26-31. 47. Jing, C., Ding, G., Qin, X., Peng, G., Huang, H., Wang, J., Zhang, S., Li, H., Luo, Z., Gao, F. New near UV photoinitiators containing benzophenone part for photoinitiating polymerization of methyl methacrylate. Progress in Organic Coatings, 2017. 110: p. 150-161. 48. Chang, C.-W. and G.-S. Liou, Stably anodic green electrochromic aromatic poly (amine–amide–imide) s: Synthesis and electrochromic properties. Organic electronics, 2007. 8(6): p. 662-672. 49. Liou, G.-S., N.-K. Huang, and Y.-L. Yang, New soluble triphenylamine-based amorphous aromatic polyamides for high performance blue-emitting hole-transporting and anodically electrochromic materials. Polymer, 2006. 47(20): p. 7013-7020. 50. Cravino, A., et al., A star-shaped triphenylamine π-conjugated system with internal charge-transfer as donor material for hetero-junction solar cells. Chemical communications, 2006(13): p. 1416-1418. 51. Song, Y., et al., New semiconductors based on triphenylamine with macrocyclic architecture: synthesis, properties and applications in OFETs. Journal of Materials Chemistry, 2007. 17(42): p. 4483-4491. 52. Gao, F., et al., Novel triphenylamine-based two-photon absorption dyes including benzophenone parts. Chinese Chemical Letters, 2009. 20(11): p. 1279-1282. 53. Li, Y.-H. and Y.-C. Chen, Triphenylamine-hexaarylbiimidazole derivatives as hydrogen-acceptor photoinitiators for free radical photopolymerization under UV and LED light. Polymer Chemistry, 2020. 11(8): p. 1504-1513. 54. Ren, W., et al., Enhancing the coplanarity of the donor moiety in a donor-acceptor molecule to improve the efficiency of switching phenomenon for flash memory devices. Dyes and Pigments, 2014. 100: p. 127-134. 55. Suresh, S., et al., Synthesis and hyperpolarizabilities of high temperature triarylamine-polyene chromophores. Tetrahedron Letters, 2005. 46(22): p. 3913-3916. 56. Fang, F., et al., The synthesis of conjugated microporous polymers via Friedel–Crafts reaction of 2,4,6-trichloro-1,3,5-triazine with thienyl derivatives for fluorescence sensing to 2,4-dinitrophenol and capturing iodine. Journal of Solid State Chemistry Volume 307, March 2022, 122818. 57. Luo, W., et al., Crystallization-induced phosphorescence, remarkable mechanochromism, and grinding enhanced emission of benzophenone-aromatic amine conjugates. Chinese Chemical Letters, 2018. 29(10): p. 1533-1536. 58. Li, Z., et al., Coumarin-Based Oxime Esters: Photobleachable and Versatile Unimolecular Initiators for Acrylate and Thiol-Based Click Photopolymerization under Visible Light-Emitting Diode Light Irradiation. ACS Applied Materials & Interfaces, 2018. 10(18): p. 16113-16123. 59. Xiao, S., et al., Zinc Iodide-Mediated Direct Synthesis of 2,3-Dihydroisoxazoles from Alkynes and Nitrones. Advanced Synthesis & Catalysis, Volume358, Issue11 June 2, 2016 Pages 1859-1863 60. Gorkem Yilmaz, Binnur Aydogan, Gokhan Temel, Nergis Arsu, Norbert Moszner, and Yusuf Yagci, Thioxanthone−Fluorenes as Visible Light Photoinitiators for Free Radical Polymerization. Macromolecules 2010, 43, 4520–4526 61. Ge Ding, Chuan Jing, Xiaozhuan Qin, Yulong Gong, Conjugated dyes carrying N, N-dialkylamino and ketone groups: One-component visible light Norrish type II photoinitiators. Dyes and Pigments Volume 137, February 2017, Pages 456-467 62. Zhihai Wang, Yuxing Sun, Qinglin Zhang, Wanyong Pan, Tiantian Li, and Yan Yin, S1Bi(OTf)3-Catalyzed Alkyl-intercepted Meyer-Schuster Rearrangement of Propargylic Alcohols for the Synthesis of 1, 2, 3, 5-Tetrasubstituted Pentane-1, 5-diones, J. Org. Chem. 2022, 87, 5, 3329–3340. 63. Jianzhang Wu, Jianling Li, Yuepiao Cai, Yong Pan, Faqing Ye, Yali Zhang, Yunjie Zhao, Shulin Yang, Xiaokun Li, and Guang Liang, Evaluation and Discovery of Novel Synthetic Chalcone Derivatives as Anti-Inflammatory Agents . Publication Date:October 11, 2011. 64. Masaki Matsui, Akira Oji, Koichi Hiramatsu, Katsuyoshi Shibata and Hiroshige Muramatsu, Synthesis and characterization of fluorescent 4,6-disubstituted-3-cyano-2-methylpyridines. Journal of the Chemical Society. Perkin transactions II, 1992, # 2, p. 201 - 206 65. Jenna M. Len, Noor Hussein, Saloni Malla, Kyle Mcintosh, Rahul Patidar, Manivannan Elangovan, Karthikeyan Chandrabose, N. S. Hari Narayana Moorthy, Manoj Pandey, Dayanidhi Raman, Piyush Trivedi and Amit K. Tiwari A Novel Dialkylamino-Functionalized Chalcone, DML6, Inhibits Cervical Cancer Cell Proliferation, In Vitro, via Induction of Oxidative Stress, Intrinsic Apoptosis and Mitotic Catastrophe. Molecules, 2021, vol. 26, # 14, art. no. 4214. 66. Marco Mellado, Nicole Roldán, Rodrigo Miranda, Luis F. Aguilar, Manuel A. Bravo and Waldo Quiroz. Sensitive fluorescent chemosensor for Hg(II) in aqueous solution using 4’-dimethylaminochalcone. Journal of Fluorescence, 2022. 67. G.Thirunarayanan, P.Mayavel, K.Thirumurthy. Fly-ash:H2SO4 catalyzed solvent free efficient synthesis of some aryl chalcones under microwave irradiation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, vol. 91, p. 18 - 22. 68. Swayamsiddha Kar, J., et al., Nonlinear optical studies and structure-activity relationship of chalcone derivatives with in silico insights. Journal of Molecular Structure Volume 1139, 5 July 2017, Pages 294-302 69. Chandrajit Dohutiaa, Dipak Chetiaa, Kabita Gogoib, Kishore Sarmab, Design, in silico and in vitro evaluation of curcumin analogues against Plasmodium falciparum. Experimental Parasitology Volume 175, April 2017, Pages 51-58. 70. B. Redondo-Foj, M. Carsi, P. Ortiz-Serna, M. J. Sanchis, S. Vallejos, F. Garcia and J. M. Garcia, Effect of the Dipole–Dipole Interactions in the Molecular Dynamics of Poly(vinylpyrrolidone)-Based Copolymers. Macromolecules, 2014, 47, 5334-5346. 71. MilicaRančić, NemanjaTrišović, MilošMilčić, GordanaUšćumlić, Substituent and solvent effects on intramolecular charge transfer of 5-arylidene-2,4-thiazolidinediones. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Volume 86, February 2012, Pages 500-507. 72. Bo Albinsson, Jerker Mårtensson, Long-range electron and excitation energy transfer in donor–bridge–acceptor systems. Volume 9, Issue 3, September 2008, Pages 138-155. 73. 螢光共振能量轉移技術的基本原理和應用. 體外診斷POCT論壇2021-01-16. 74. Sonia Kotowicz., et al., 2,2-Dicyanovinyl derivatives–Thermal, photophysical, electrochemical and electroluminescence investigations. Materials Chemistry and Physics Volume 209, 15 April 2018, Pages 249-261. 75. Huang, T.H., et al., Synthesis, structures, DFT studies and properties of novel tertiary diphosphines based on α- and β-naphthylamine. Journal of Molecular Structure Volume 1247, 5 January 2022, 131375. 76. Ware, W.R. and H.P. Richter, Fluorescence quenching via charge transfer: the perylene‐N, N‐dimethylaniline system. J. Chem. Phys. 48, 1595 (1968) 77. Mohamad-Ali Tehfe, Frédéric Dumur, Pu Xiao, Bernadette Graff, Fabrice Morlet-Savary, Jean-Pierre Fouassier, Didier Gigmes, Jacques Lalevée, New chromone based photoinitiators for polymerization reactions under visible light. Polym. Chem., 2013, 4, 4234. 78. Mohamad-Ali Tehfe, Frédéric Dumur, Pu Xiao, Bernadette Graff, Fabrice, Marie Delgove, Jean-Pierre Fouassier, Didier Gigmes, Jacques Lalevée, Chalcone derivatives are proposed as novel highly versatile photoinitiators for polymerization upon visible lights. Polym. Chem., 2014,5, 382-390. 79. Masaki Matsui, Akira Oji, Koichi Hiramatsu, Katsuyoshi Shibata and Hiroshige Muramatsu. Synthesis and characterization of fluorescent 4,6-disubstituted-3-cyano-2-methylpyridines. J. Chem. Soc., Perkin Trans. 2, 1992, 201-206. 80. Ge Ding, Chuan Jing et al., Conjugated dyes carrying N, N-dialkylamino and ketone groups: One-component visible light Norrish type II photoinitiators Dyes and Pigments Volume 137, February 2017, Pages 456-467. 81. Rehm, D. and A. Weller, Kinetics of Fluorescence Quenching by Electron and H-Atom Transfer. Israel Journal of Chemistry, 1970. 8(2): p. 259-271. 82. Yung-Chung Chen, Ting-Yu Liu, Yan-Heng Li, Photoreactivity study of photoinitiated free radical polymerization using Type II photoinitiator containing thioxanthone initiator as a hydrogen acceptor and various amine-type co-initiators as hydrogen donors. J Coat Technol Res (2021) 18:99-106. 83. Eren, T.N., et al., A water soluble and highly reactive bisphosphonate functionalized thioxanthone-based photoinitiator. European Polymer Journal, 2020. 135: p. 109906. 884. Shi, Y., et al., Synthesis of a novel hexaarylbiimidazole with ether groups and characterization of its photoinitiation properties for acrylate derivatives. Polymer Engineering & Science, 2006. 46(4): p. 474-479. 85. Andrzejewska, E. and M. Andrzejewski, Polymerization kinetics of photocurable acrylic resins. Journal of Polymer Science Part A: Polymer Chemistry, 1998. 36(4): p. 665-673.
|