Acosta, J.A., Cano, A.F., Arocena, J.M., Debela, F. and Martínez-Martínez, S., 2009. Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia City (Spain). Geoderma, 149(1-2): 101-109.
Agrawal, U.S., Wanjari, S.P. and Naresh, D.N., 2019. Impact of replacement of natural river sand with geopolymer fly ash sand on hardened properties of concrete. Construction and Building Materials, 209: 499-507.
Azri, N., Irmawati, R., Nda-Umar, U.I., Saiman, M.I. and Taufiq-Yap, Y.H., 2021. Promotional effect of transition metals (Cu, Ni, Co, Fe, Zn)–supported on dolomite for hydrogenolysis of glycerol into 1,2-propanediol. Arabian Journal of Chemistry, 14(4).
Beddaa, H., Ben Fraj, A., Lavergne, F. and Torrenti, J.M., 2019. Effect of potassium humate as humic substances from river sediments on the rheology, the hydration and the strength development of a cement paste. Cement and Concrete Composites, 104: 103400.
Das, B., 1994. Principles of geotechnical engineering. PWS series in engineering.
Carp, O., Huisman, C.L. and Reller, A., 2004. Photoinduced reactivity of titanium dioxide. Progress in solid state chemistry, 32(1-2): 33-177.
Cai, Q., Ma, B., Jiang, J., Wang, J., Shao, Z., Hu, Y., and Wang, L., 2021. Utilization of waste red gypsum in autoclaved aerated concrete preparation. Construction and Building Materials, 291: 123376.
Cai, L., 2016. Mechanical and hydration characteristics of autoclaved aerated concrete (AAC) containing iron-tailings: Effect of content and fineness. Construction and Building Materials, 128: 361-372.
Cai, L., 2015. Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration, 148: 189-195.
Charriau, A., Lesven, L., Gao, Y., Leermakers, M., Baeyens, W., Ouddane, B., and Billon, G., 2011. Trace metal behaviour in riverine sediments: Role of organic matter and sulfides. Applied Geochemistry, 26(1): 80-90.
Chen, Q.Y., Tyrer, M., Hills, C.D., Yang, X.M. and Carey, P., 2009. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review. Waste Management, 29(1): 390-403.
Chen, Y.L., Ko, M.S., Chang, J.E. and Lin, C.T., 2018. Recycling of desulfurization slag for the production of autoclaved aerated concrete. Construction and Building Materials, 158: 132-140.
Cong, X.Y., Lu, S., Yao, Y. and Wang, Z., 2016. Fabrication and characterization of self-ignition coal gangue autoclaved aerated concrete. Materials and Design, 97: 155-162.
Commission, E.E., 2003. Indoor Air Pollution: New EU Research Reveals Higher Risks than Previously Thought. Joint Research Center.
Cullity, B. D., Stock, S. R., 2001. Elements of X-ray Diffraction, Third Edition. Upper Saddle: Prentice-Hall, New York.
Cárdenas, C., Tobón, J.I., García, C. and Vila, J., 2012. Functionalized building materials: Photocatalytic abatement of NOx by cement pastes blended with TiO2 nanoparticles. Construction and Building Materials, 36: 820-825.
Darkhosh, F., Lashanizadegan, M., Mahjoub, A.R. and Cheshme Khavar, A.H., 2019. One pot synthesis of CuFeO2 expanding perlite as a novel efficient floating catalyst for rapid degradation of methylene blue under visible light illumination. Solid State Sciences, 91: 61-72.
Debono, O., Hequet, V., Le Coq, L., Locoge, N. and Thevenet, F., 2017. VOC ternary mixture effect on ppb level photocatalytic oxidation: Removal kinetic, reaction intermediates and mineralization. Applied Catalysis B: Environmental, 218: 359-369.
De Andrade, F. V., De Lima, G. M., Augusti, R., da Silva, J. C. C., Coelho, M. G., Paniago, R. and Machado, I.R., 2015. A novel TiO2/autoclaved cellular concrete composite: From a precast building material to a new floating photocatalyst for degradation of organic water contaminants. Journal of Water Process Engineering, 7: 27-35.
Długosz, M., Waś, J., Szczubiałka, K. and Nowakowska, M., 2014. TiO2-coated EP as a floating photocatalyst for water purification. Journal of Materials Chemistry A, 2(19): 6931-6938.
El-Didamony, H., Amer, A.A., Mohammed, M.S. and El-Hakim, M.A., 2019. Fabrication and properties of autoclaved aerated concrete containing agriculture and industrial solid wastes. Journal of Building Engineering, 22: 528-538.
Förstner, U. and Wittmann, G.T.W., 1983. Metal Pollution in the Aquatic Environment, 2nd Edition, Springer, New York.
Gao, L., Gan, W., Xiao, S., Zhan, X. and Li, J., 2016. A robust superhydrophobic antibacterial Ag–TiO2 composite film immobilized on wood substrate for photodegradation of phenol under visible-light illumination. Ceramics International, 42(2): 2170-2179.
Gloaguen, T.V., Motta, P.N.S.D. and Couto, C.F., 2021. A grain-size correction for metal pollution indexes in river sediments. International Journal of Sediment Research, 36(3): 362-372.
Hajimohammadi, A., Ngo, T. and Mendis, P., 2017. How does aluminium foaming agent impact the geopolymer formation mechanism? Cement and Concrete Composites, 80: 277-286.
Han, H. and Bai, R., 2009. Buoyant photocatalyst with greatly enhanced visible-light activity prepared through a low temperature hydrothermal method. Industrial & Engineering Chemistry Research, 48(6): 2891-2898.
Haque, M.A. and Subramanian, V., 1982. Cu, Pb and Zn pollution of soil environment. Critical Reviews in Environmental Control, 12: 13-90.
Ho, C.C., Kang, F., Chang, G.M., You, S.J. and Wang, Y.F., 2019. Application of recycled lanthanum-doped TiO2 immobilized on commercial air filter for visible-light photocatalytic degradation of acetone and NO. Applied Surface Science, 465: 31-40.
Hou, X., Ma, H., Liu, F., Deng, J., Ai, Y., Zhao, X. and Liao, B., 2015. Synthesis of Ag ion-implanted TiO2 thin films for antibacterial application and photocatalytic performance. Journal of Hazardous Materials, 299: 59-66.
Hosseini, S.N., Borghei, S.M., Vossoughi, M. and Taghavinia, N., 2007. Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. Applied Catalysis B: Environmental, 74(1): 53-62.
Huang, M., 2015. Intergrowth and coexistence effects of TiO2–SnO2 nanocomposite with excellent photocatalytic activity. Journal of Alloys and Compounds, 629: 55-61.
Huang, X.y., Ni, W., Cui, W.h., Wang, Z.j. and Zhu, L.p., 2012. Preparation of autoclaved aerated concrete using copper tailings and blast furnace slag. Construction and Building Materials, 27(1): 1-5.
Jerman, M., Keppert, M., Výborný, J. and Černý, R., 2013. Hygric, thermal and durability properties of autoclaved aerated concrete. Construction and Building Materials, 41: 352-359.
Kalpana, M. and Mohith, S., 2020. Study on autoclaved aerated concrete: Review. Materials Today: Proceedings, 22: 894-896.
Kaoien, P., Dechapanya, W., Khamwichit, A. and Suwannahong, K., 2020. Natural rubber modification as a pre-vulcanized latex impregnated with TiO2 for photo-catalytic degradation of gaseous benzene. Heliyon, 6(5): e03912.
Karakurt, C., Kurama, H. and Topçu, İ.B., 2010. Utilization of natural zeolite in aerated concrete production. Cement and Concrete Composites, 32(1): 1-8.
Khadse, G.K., Patni, P.M., Kelkar, P.S. and Devotta, S., 2008. Qualitative evaluation of Kanhan river and its tributaries flowing over central Indian plateau. Environmental Monitoring and Assessment, 147(1-3): 83-92.
Klimesch, D.S., Ray, A. and Sloane, B., 1996. Autoclaved cement-quartz pastes: The effects on chemical and physical properties when using ground quartz with different surface areas Part I: Quartz of wide particle size distribution. Cement and Concrete Research, 26(9): 1399-1408.
Kolarik, J. and Wargocki, P., 2010. Can a photocatalytic air purifier be used to improve the perceived air quality indoors? Indoor Air, 20(3): 255-262.
Kunchariyakun, K., Asavapisit, S. and Sombatsompop, K., 2015. Properties of autoclaved aerated concrete incorporating rice husk ash as partial replacement for fine aggregate. Cement and Concrete Composites, 55: 11-16.
Laukaitis, A., Kerienė, J., Mikulskis, D., Sinica, M. and Sezemanas, G., 2009. Influence of fibrous additives on properties of aerated autoclaved concrete forming mixtures and strength characteristics of products. Construction and Building Materials, 23(9): 3034-3042.
Literathy, P., Nasser ali, L., M. A. and ali M. A., 1987. The role and problems of monitoring bottom sediment for pollution assessment in the coastal marine environment. Water Science and Technology,19: 781-792.
Liu, J.J., Diao, Z.H., Xu, X.R. and Xie, Q., 2019. Effects of dissolved oxygen, salinity, nitrogen and phosphorus on the release of heavy metals from coastal sediments. Science of The Total Environment, 666: 894-901.
Ma, B.g., Cai, L.x., Li, X.g. and Jian, S.w., 2016. Utilization of iron tailings as substitute in autoclaved aerated concrete: physico-mechanical and microstructure of hydration products. Journal of Cleaner Production, 127: 162-171.
Ma, X.W., Chen, H.X. and Wang, P.M., 2010. Effect of CuO on the formation of clinker minerals and the hydration properties. Cement and Concrete Research, 40(12): 1681-1687.
Magalhães, F. and Lago, R.M., 2009. Floating photocatalysts based on TiO2 grafted on expanded polystyrene beads for the solar degradation of dyes. Solar Energy, 83(9): 1521-1526.
Magnier, A., Billon, G., Louis, Y., Baeyens, W. and Elskens, M., 2011. On the lability of dissolved Cu, Pb and Zn in freshwater: Optimization and application to the Deule (France). Talanta, 86: 91-8.
Maury-Ramirez, A., Demeestere, K. and De Belie, N., 2012. Photocatalytic activity of titanium dioxide nanoparticle coatings applied on autoclaved aerated concrete: Effect of weathering on coating physical characteristics and gaseous toluene removal. Journal of Hazardous Materials, 211-212: 218-25.
Mindess, S., 1981. Concrete. Prentice Hall, New Jersey.
Minocha, A.K., Jain, N. and Verma, C.L., 2003. Effect of inorganic materials on the solidification of heavy metal sludge. Cement and Concrete Research, 33(10): 1695-1701.
Mohammadi, Z., Sharifnia, S. and Shavisi, Y., 2016. Photocatalytic degradation of aqueous ammonia by using TiO2-ZnO/LECA hybrid photocatalyst. Materials Chemistry and Physics, 184: 110-117.
Nasir, A.M., 2020. A review on floating nanocomposite photocatalyst: Fabrication and applications for wastewater treatment. Journal of Water Process Engineering, 36: 101300.
Natali Sora, I., Pelosato, R., Botta, D. and Dotelli, G., 2002. Chemistry and microstructure of cement pastes admixed with organic liquids. Journal of the European Ceramic Society, 22(9): 1463-1473.
Neser, G., 2012. Heavy metals contamination levels at the Coast of Aliaga (Turkey) ship recycling zone. Marine Pollution Bulletin, 64(4): 882-7.
Nie, C., Liu, L. and He, R., 2018. Pt/TiO2-ZnO in a circuit Photo-electro-catalytically removed HCHO for outstanding indoor air purification. Separation and Purification Technology, 206: 316-323.
Nuasaen, S., Opaprakasit, P. and Tangboriboonrat, P., 2014. Hollow latex particles functionalized with chitosan for the removal of formaldehyde from indoor air. Carbohydrate polymers, 101: 179-187.
Olmo, I.F., Chacon, E. and Irabien, A., 2001. Influence of lead, zinc, iron (III) and chromium (III) oxides on the setting time and strength development of Portland cement. Cement and Concrete Research, 31: 1213-1219.
Onoue, K., Iwamoto, T. and Sagawa, Y., 2019. Optimization of the design parameters of fly ash-based geopolymer using the dynamic approach of the Taguchi method. Construction and Building Materials, 219: 1-10.
Pei, C., Zhu, J.-H. and Xing, F., 2021. Photocatalytic property of cement mortars coated with graphene/TiO2 nanocomposites synthesized via sol–gel assisted electrospray method. Journal of Cleaner Production, 279: 123590.
Peng, Y., Liu, Y., Zhan, B. and Xu, G., 2021. Preparation of autoclaved aerated concrete by using graphite tailings as an alternative silica source. Construction and Building Materials, 267: 121792.
Różycka, A. and Pichór, W., 2016. Effect of perlite waste addition on the properties of autoclaved aerated concrete. Construction and Building Materials, 120: 65-71.
Rajan, A.J., 2020. Optimization of mould sand properties by mixing of granite powder using Taguchi method. Materials Today: Proceedings, 45: 2254-2259.
Ramirez, A.M., Demeestere, K., De Belie, N., Mäntylä, T. and Levänen, E., 2010. Titanium dioxide coated cementitious materials for air purifying purposes: Preparation, characterization and toluene removal potential. Building and Environment, 45(4): 832-838.
Ren, H., Koshy, P., Chen, W.-F., Qi, S. and Sorrell, C.C., 2017. Photocatalytic materials and technologies for air purification. Journal of Hazardous Materials, 325: 340-366.
Sajjad, A.K., Shamaila, S., Tian, B., Chen, F. and Zhang, J., 2010. Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst. Journal of Hazardous Materials, 177(1-3): 781-91.
Sboui, M., Nsib, M.F., Rayes, A., Swaminathan, M. and Houas, A., 2017. TiO2–PANI/Cork composite: A new floating photocatalyst for the treatment of organic pollutants under sunlight irradiation. Journal of Environmental Sciences, 60: 3-13.
Sharifi, E., Sadjadi, S.J., Aliha, M.R.M. and Moniri, A., 2020. Optimization of high-strength self-consolidating concrete mix design using an improved Taguchi optimization method. Construction and Building Materials, 236: 117547.
Shams, T., Schober, G., Heinz, D. and Seifert, S., 2021. Production of autoclaved aerated concrete with silica raw materials of a higher solubility than quartz part I: Influence of calcined diatomaceous earth. Construction and Building Materials, 272.
Shan, A.Y., Ghazi, T.I.M. and Rashid, S.A., 2010. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Applied Catalysis A: General, 389(1-2): 1-8.
Song, Y., Li, B., Yang, E.-H., Liu, Y. and Ding, T., 2015. Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete. Cement and Concrete Composites, 56: 51-58.
Spasiano, D., Marotta, R., Malato, S., Fernandez-Ibañez, P. and Di Somma, I., 2015. Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Applied Catalysis B: Environmental, 170-171: 90-123.
Stephan, D., Maleki, H., Knofel, D., EBer, B. and Hardtl, R., 1999. Influence of Cr, Ni, and Zn on the properties of pure clinker phases Part II. C3A and C4AF. Cement and Concrete Research, 29: 651-657.
Song, J., Wang, X., Bu, Y., Zhang, J., Wang, X., Huang, J., and Zhao, J., 2016. Preparation, characterization, and photocatalytic activity evaluation of Fe–N-codoped TiO2/fly ash cenospheres floating photocatalyst. Environmental Science and Pollution Research, 23(22): 22793-22802.
Suave, J., Amorim, S.M. and Moreira, R.F.P.M., 2017. TiO2-graphene nanocomposite supported on floating autoclaved cellular concrete for photocatalytic removal of organic compounds. Journal of Environmental Chemical Engineering, 5(4): 3215-3223.
Sui, G., Li, J., Du, L., Zhuang, Y., Zhang, Y., Zou, Y., and Li, B., 2020. Preparation and characterization of g-C3N4/Ag–TiO2 ternary hollowsphere nanoheterojunction catalyst with high visible light photocatalytic performance. Journal of Alloys and Compounds, 823: 153851.
Sun, C., Zhang, Z., Cao, H., Xu, M. and Xu, L., 2019. Concentrations, speciation, and ecological risk of heavy metals in the sediment of the Songhua River in an urban area with petrochemical industries. Chemosphere, 219: 538-545.
Tam, N.F. and Wong, Y.S., 2000. Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environmental Pollution, 110: 195-205.
Tessier, A., Campbell, P.G.C. and Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7): 844-851.
Tabar, M.B., Elahi, S., Ghoranneviss, M. and Yousefi, R., 2020. The role of the Se-rich and Se-poor conditions in the photocatalytic performance of ZnSe/rGO nanocomposites. Applied Surface Science, 513: 145819.
Topçu, İ.B. and Uygunoğlu, T., 2007. Properties of autoclaved lightweight aggregate concrete. Building and Environment, 42(12): 4108-4116.
US.EPA, 1993. Selecting remediation techniques for contaminated sediment, EPA-823-B93-001.
Wahane, A., 2017. Manufacturing Process of AAC Block. Columbia Institute of Engineering and Technology, Raipur, (India), International Journal of Innovative Research in Science, Engineering and Technology, Pg: 4-11.
Walczak, P., Małolepszy, J., Reben, M., Szymański, P. and Rzepa, K., 2015. Utilization of waste glass in autoclaved aerated concrete. Procedia Engineering, 122: 302-309.
Wang, J., He, B. and Kong, X.Z., 2015. A study on the preparation of floating photocatalyst supported by hollow TiO2 and its performance. Applied Surface Science, 327: 406-412.
Weeks, C., Hand, R.J. and Sharp, J.H., 2008. Retardation of cement hydration caused by heavy metals present in ISF slag used as aggregate. Cement and Concrete Composites, 30(10): 970-978.
Wu, R., Dai, S., Jian, S., Huang, J., Tan, H., and Li, B., 2021. Utilization of solid waste high-volume calcium coal gangue in autoclaved aerated concrete: Physico-mechanical properties, hydration products and economic costs. Journal of Cleaner Production, 278, 123416.
Xu, Y., Jin, R., Hu, L., Li, B., Chen, W., Shen, J., and Fang, J, 2020. Studying the mix design and investigating the photocatalytic performance of pervious concrete containing TiO2-Soaked recycled aggregates. Journal of Cleaner Production, 248: 119281.
Yin, H., Tan, N., Liu, C., Wang, J., Liang, X., Qu, M., and Liu, F., 2016. The associations of heavy metals with crystalline iron oxides in the polluted soils around the mining areas in Guangdong Province, China. Chemosphere, 161: 181-189.
Yousuf, M., Mollah, A., Vempati, R.K., Lin, T.C. and Cocke, D.L., 1995. The interfacial chemistry of solidification/stabilization of metals in cement and pozzolanic material systems. Waste Management, 15(2): 137-148.
Zafar, M.S., Javed, U., Khushnood, R.A., Nawaz, A. and Zafar, T., 2020. Sustainable incorporation of waste granite dust as partial replacement of sand in autoclave aerated concrete. Construction and Building Materials, 250: 118878.
Zak, R. and Deja, J., 2015. Spectroscopy study of Zn, Cd, Pb and Cr ions immobilization on C-S-H phase. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 134: 614-20.
Zhang, J. and Liu, Z., 2019. Fabrication and characterization of Eu2+-doped lanthanum-magnesium-gallium/TiO2-based composition as photocatalytic materials for cement concrete-related methyl orange (MO) degradation. Ceramics International, 45(8): 10342-10347.
Zhang, J., 2015. Floating photocatalysts based on loading Bi/N-doped TiO2 on expanded graphite C/C (EGC) composites for the visible light degradation of diesel. RSC advances, 5(88): 71922-71931.
丁啟東,1989。河川底泥耗氧速率之研究,國立成功大學,台南市,碩士論文。王建雄,2014。珍珠岩應用於輕質隔間牆之隔音效能研究,逢甲大學,台中市,碩士論文。李春樹,2003。銅鋅鉛在污染土壤中之化學型態及其萃取性研究。國立成功大學,台南市,博士論文。李祐承,2013。焚化飛灰與脫硫石膏產製高壓蒸氣養護氣泡混凝土之研究,國立成功大學,台南市,碩士論文。李輝煌,2013。田口方法品質設計的原理與實務,第四版,新北市:高立圖書有限公司。
張繼譽,2015。脫硫渣細料產製高壓蒸氣養護氣泡混凝土之研究,國立成功大學,台南市,碩士論文。陳詣欣,2012。粒徑對煉鋼爐渣產製蒸壓氣泡混凝土特性之影響,國立成功大學,台南市,碩士論文。彭信源,2014。焚化底渣濕篩污泥產製功能性建材之研究,國立成功大學,台南市,碩士論文。羅良慧,1997。應用地理資訊系統於土壤鎘污染危害評估方法之研究,國立中興大學,台中市,碩士論文。謝季吟,2017。河川底泥金屬生物有效性的評估方法,行政院環境保護署,期末報告。
高憲彰,2009。水庫淤泥資源再利用與市場評估-以石門水庫為例,環境永續國際論壇。
詹穎雯,2020。回收玻璃應用於蒸壓加氣輕隔間建材之製成驗證,行政院環保署,期末報告。
黃兆龍,2007。混凝土性質與行為,詹氏書局,台北。
內政部營建署,2020,建築物節約能源設計技術規範。