|
[1] 橡膠是什麼?深入了解橡膠原料的組成, (2023). [2] 嚴鴻仁、徐善慧, 奈米金與銀的妙用, (2008). [3] J. Yang, H. Yin, J. Jia, Y.J.L. Wei, Facile synthesis of high concentration, stable aqueous dispersions of uniform silver nanoparticles using aniline as a reductant, 27(8) (2011) 5047-5053. [4] S. Wojtysiak, A.J.C. Kudelski, S.A. Physicochemical, E. Aspects, Influence of oxygen on the process of formation of silver nanoparticles during citrate/borohydride synthesis of silver sols, 410 (2012) 45-51. [5] 天然橡膠歷史、天然乳膠產業發展、乳膠產地的未來, (2022). [6] T.R.J.I.J.o.D. Vijayaram, M. Technologies, A technical review on rubber, 3(1) (2009) 25-37. [7] A.N. Gent, Rubber. [8] 吳志宏, 廢橡膠材料的循環再生. [9] 薛富盛, 奈米科技之現況與發展. [10] 王淑卿, 天然奈米材料驚豔生物. [11] 羅夢凡, 奈米金觸媒的尺寸效應. [12] 劉致中、張怡雯, 從半導體到民生消耗品 奈米科技無處不在. [13] M. Notarianni, K. Vernon, A. Chou, M. Aljada, J. Liu, N.J.S.E. Motta, Plasmonic effect of gold nanoparticles in organic solar cells, 106 (2014) 23-37. [14] P. Mao, M. Xu, J. Chen, B. Xie, F. Song, M. Han, G.J.N. Wang, Dual enhancement of light extraction efficiency of flip-chip light-emitting diodes with multiple beveled SiC surface and porous ZnO nanoparticle layer coating, 26(18) (2015) 185201. [15] Y. Liu, T.J.J.o.N. Cui, Optoelectronics, Nanoscale field-effect transistor based on layer-by-layer self-assembled nanoparticle thin films, 1(2) (2006) 215-218. [16] B.O. Bica, J.V.S.J.C. de Melo, B. Materials, Concrete blocks nano modified with zinc oxide (ZnO) for photocatalytic paving: Performance comparison with titanium dioxide (TiO2), 252 (2020) 119120. [17] J. Zhang, X. Zhang, L. Wang, J. Zhang, R. Liu, Q. Sun, X. Ye, X.J.G. Ma, Fabrication and Applications of Ceramic-Based Nanofiber Materials Service in High-Temperature Harsh Conditions—A Review, 9(3) (2023) 208. [18] P. Varanasi, A. Fullana, S.J.C. Sidhu, Remediation of PCB contaminated soils using iron nano-particles, 66(6) (2007) 1031-1038. [19] H. Lee, S. Lee, S. Jung, J.J.S. Lee, A.B. Chemical, Nano-grass polyimide-based humidity sensors, 154(1) (2011) 2-8. [20] M. Holzapfel, H. Buqa, L.J. Hardwick, M. Hahn, A. Würsig, W. Scheifele, P. Novák, R. Kötz, C. Veit, F.-M.J.E.a. Petrat, Nano silicon for lithium-ion batteries, 52(3) (2006) 973-978. [21] P. Liu, K. Zhu, Y. Gao, H. Luo, L.J.A.E.M. Lu, Recent progress in the applications of vanadium‐based oxides on energy storage: from low‐ dimensional nanomaterials synthesis to 3D micro/nano‐structures and free‐standing electrodes fabrication, 7(23) (2017) 1700547. [22] S. Kang, H. Kim, Y.-H.J.N.C. Chung, Recent developments of nano structured materials as the catalysts for oxygen reduction reaction, 5 (2018) 1-15. [23] K. Kroftová, M.J.W.R. Šmidtová, THE CURRENT STATE OF KNOWLEDGE IN THE FIELD OF THE USE OF SELECTED NANOSYSTEMS IN HERITAGE PRESERVATION-NANOTEXTILES AS BIOCIDAL PROTECTION OF HISTORIC WOOD, 61(4) (2016) 531-544. [24] T.-W. Shyr, C.-H. Lien, A.-J.J.T.r.j. Lin, Coexisting antistatic and water-repellent properties of polyester fabric, 81(3) (2011) 254-263. [25] X.J.D. Zheng, W. TREATMENT, Application of nano-TiO2 photocatalyst in marine pollution control, 268 (2022) 303-312. [26] N.N. Nedyalkov, S.E. Imamova, P.A. Atanasov, R.A. Toshkova, E.G. Gardeva, L.S. Yossifova, M.T.J.C.r.A.B.S. Alexandrov, Nanosecond laser heating of gold nanoparticles. Application in photothermal cancer cell therapy, 63 (2010) 467-774. [27] W. Wang, G. Liu, M. Liu, X.J.M.E. Li, Mechanisms underlying the action of self-assembling short-peptide nano-fiber gel scaffold materials in the aesthetic repair of burn wounds, 10(3) (2020) 454-459. [28] S.C. Yoo, Y.K. Park, C. Park, H. Ryu, S.H.J.A.F.M. Hong, Biomimetic artificial nacre: boron nitride nanosheets/gelatin nanocomposites for biomedical applications, 28(51) (2018) 1805948. [29] J.d. Mello, A.d.J.L.o.a.C. Mello, FocusMicroscale reactors: nanoscale products, 4(2) (2004) 11N-15N. [30] W.-p. Zhang, C.-d. Zou, B.-g. Zhao, Q.-j. Zhai, Y.-l.J.T.o.N.M.S.o.C. Gao, Size control and its mechanism of SnAg nanoparticles, 24(3) (2014) 750-757. [31] R. Desai, V. Mankad, S.K. Gupta, P.K.J.N. Jha, n. letters, Size distribution of silver nanoparticles: UV-visible spectroscopic assessment, 4(1) (2012) 30-34. [32] 周更生、李賢學、高振裕、盧育杰, 功能性粉末:奈米銀. [33] T. Yuranova, A. Rincon, A. Bozzi, S. Parra, C. Pulgarin, P. Albers, J.J.J.o.P. Kiwi, P.A. Chemistry, Antibacterial textiles prepared by RF plasma and vacuum-UV mediated deposition of silver, 161(1) (2003) 27- 34. [34] Y. Nakama, Chapter 15 - Surfactants, Elsevier Pages 231-244 (2017). [35] M. Somalu, A. Samat, A. Muchtar, N.J.A.J.o.P.S. Osman, Polymer based approach in ceramic materials processing for energy device applications, 1(5) (2018) 70-75. [36] B.M. Sonkoue, P.M.S. Tchekwagep, C.P. Nanseu‐Njiki, E.J.E. Ngameni, Electrochemical determination of arsenic using silver nanoparticles, 30(11) (2018) 2738-2743. [37] Y. Li, Y.N. Kim, E.J. Lee, W.P. Cai, S.O.J.N.I. Cho, M.i.P.R.S.B.B.I.w. Materials, Atoms, Synthesis of silver nanoparticles by electron irradiation of silver acetate, 251(2) (2006) 425-428. [38] N. Durán, G. Nakazato, A.B.J.A.m. Seabra, biotechnology, Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments, 100 (2016) 6555-6570. [39] H. Le Trong, K. Kiryukhina, M. Gougeon, V. Baco-Carles, F. Courtade, S. Dareys, P.J.S.S.S. Tailhades, Paramagnetic behaviour of silver nanoparticles generated by decomposition of silver oxalate, 69 (2017) 44-49. [40] A. Król-Gracz, E. Michalak, P.M. Nowak, A.J.C.E.J.o.C. Dyonizy, Photo-induced chemical reduction of silver bromide to silver nanoparticles, 9 (2011) 982-989. [41] 鄧子新, 微生物學, (2017). [42] 財團法人肝病防治學術基金會, 大腸桿菌是敵,是友?, (2011). [43] 金黃色葡萄球菌:熟悉的陌生人,潛藏危害與檢驗方法, (2019). [44] G.-A. Martínez-Castañon, N. Nino-Martinez, F. Martinez-Gutierrez, 88 J. Martínez-Mendoza, F.J.J.o.n.r. Ruiz, Synthesis and antibacterial activity of silver nanoparticles with different sizes, 10 (2008) 1343-1348. [45] C.L. Haynes, R.P.J.T.J.o.P.C.B. Van Duyne, Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics, ACS Publications, 2001, pp. 5599-5611. [46] Z.-P. Cheng, X.-Z. Chu, X.-Q. Wu, J.-M. Xu, H. Zhong, J.-Z.J.R.M. Yin, Controlled synthesis of silver nanoplates and nanoparticles by reducing silver nitrate with hydroxylamine hydrochloride, 36 (2017) 799- 805. [47] S.W. Wajge, C.J.P.f.A.T. Das, Generating crosslinking network in XNBR based on copper (I)–carboxylate interaction, 34(3) (2023) 998- 1007. [48] L. Yu, D. Yang, Q. Wei, L.J.C.S. Zhang, Technology, Constructing of strawberry-like core-shell structured Al2O3 nanoparticles for improving thermal conductivity of nitrile butadiene rubber composites, 209 (2021) 108786. [49] Z. Cao, Z. Liao, X. Wang, S. Su, J. Feng, J.J.J.o.a.p.s. Zhu, Preparation and properties of NBR composites filled with a novel black liquor–montmorillonite complex, 127(5) (2013) 3725-3730. [50] P. Shang, C. Shao, Q. Li, C.J.M.R.E. Wu, Preparation and characterization of high performance NBR/cobalt (II) chloride coordination composites, 5(2) (2018) 025308. [51] T. Suwatthanarak, B. Than-ardna, D. Danwanichakul, P.J.M.L. Danwanichakul, Synthesis of silver nanoparticles in skim natural rubber latex at room temperature, 168 (2016) 31-35
|