|
[1]Aydin S., Karaçay H.A., Shahi A., Gökçe S., Ince B., Ince O., Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation, Fungal Biology Reviews. 31 (2017) 61-72. [2]Chang C.-H., Yang H.-Y., Hung J.-M., Lu C.-J., Liu M.-H., Simulation of combined anaerobic/aerobic bioremediation of tetrachloroethylene in groundwater by a column system, International Biodeterioration & Biodegradation. 117 (2017) 150-157. [3]Kuiper I., Lagendijk E.L., Bloemberg G.V., Lugtenberg B.J.J., Rhizoremediation: A Beneficial Plant-Microbe Interaction, Molecular Plant-Microbe Interactions. 17 (2004) 6-15. [4]Adams G.O., Fufeyin P.T., Okoro S.E., Ehinomen I., Bioremediation, Biostimulation and Bioaugmention: A Review, International Journal of Environmental Bioremediation & Biodegradation. 3 (2015) 28-39. [5]Maier R.M., Chapter 20 - Microorganisms and Organic Pollutants, in: R. M. Maier, I. L. Pepper, C. P. Gerba (Eds.), Environmental Microbiology (Second Edition), Academic Press, San Diego, 2009, pp. 387-420. [6]王嘉琪, 探討不同含氯有機物污染場址之脫鹵微生物菌相與數量變化及共生微生物存在之意義, 2015. [7]Gomez-Acata S., Vital-Jacome M., Perez-Sandoval M.V., Navarro-Noya Y.E., Thalasso F., Luna-Guido M., Conde-Barajas E., Dendooven L., Microbial community structure in aerobic and fluffy granules formed in a sequencing batch reactor supplied with 4-chlorophenol at different settling times, Journal of hazardous materials. 342 (2018) 606-616. [8]Chen M., Xu P., Zeng G., Yang C., Huang D., Zhang J., Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs, Biotechnology advances. 33 (2015) 745-755. [9]Zhao J., Li Y., Chen X., Li Y., Effects of carbon sources on sludge performance and microbial community for 4-chlorophenol wastewater treatment in sequencing batch reactors, Bioresource Technology. 255 (2018) 22-28. [10]Beristain-Montiel L., Martinez-Hernandez S., de Maria Cuervo-Lopez F., Ramirez-Vives F., Dynamics of a microbial community exposed to several concentrations of 2-chlorophenol in an anaerobic sequencing batch reactor, Environmental technology. 36 (2015) 1776-1784. [11]朱皓瑜, HMB熟成過程中對2,4-二氯酚脫鹵之影響 = Effect of dehalogenation of 2,4- dichlorophenol during the ripening of HMB, 高雄市, 2018. [12]Brillas E., Calpe J.C., Casado J., Mineralization of 2,4-D by advanced electrochemical oxidation processes, Water Research. 34 (2000) 2253-2262. [13]楊淑貞, 韓曉冬, 陳偉, 南京大學醫學院免疫與生殖生物學實驗室 江.南., 南京大學環境學院污染控制與資源化國家重點實驗室 江.南., 五氯酚對生物體的毒性研究進展, 環境與健康雜誌. (2005) 396-398. [14]Annachhatre A.P., Gheewala S.H., Biodegradation of chlorinated phenolic compounds, Biotechnology advances. 14 (1996) 35-56. [15]Lyytikainen M., Sormunen A., Peraniemi S., Kukkonen J.V., Environmental fate and bioavailability of wood preservatives in freshwater sediments near an old sawmill site, Chemosphere. 44 (2001) 341-350. [16]Ni Z., van Gaans P., Smit M., Rijnaarts H., Grotenhuis T., Combination of aquifer thermal energy storage and enhanced bioremediation: resilience of reductive dechlorination to redox changes, Applied microbiology and biotechnology. 100 (2016) 3767-3780. [17]Peng X., Qu X., Luo W., Jia X., Co-metabolic degradation of tetrabromobisphenol A by novel strains of Pseudomonas sp. and Streptococcus sp, Bioresour Technol. 169 (2014) 271-276. [18]Huang L., Shi Y., Wang N., Dong Y., Anaerobic/aerobic conditions and biostimulation for enhanced chlorophenols degradation in biocathode microbial fuel cells, Biodegradation. 25 (2014) 615-632. [19]Wang S.-G., Liu X.-W., Zhang H.-Y., Gong W.-X., Sun X.-F., Gao B.-Y., Aerobic granulation for 2,4-dichlorophenol biodegradation in a sequencing batch reactor, Chemosphere. 69 (2007) 769-775. [20]Zhang C., Zhou M., Ren G., Yu X., Ma L., Yang J., Yu F., Heterogeneous electro-Fenton using modified iron-carbon as catalyst for 2,4-dichlorophenol degradation: influence factors, mechanism and degradation pathway, Water Res. 70 (2015) 414-424. [21]Jianlong W., Hegemann W., Microbial dehalogenation of trichlorophenol by a bacterial consortium: characterization and mechanism, Science in China Series B: Chemistry. 46 (2003) 207-215. [22]Pomiès M., Choubert J.M., Wisniewski C., Coquery M., Modelling of micropollutant removal in biological wastewater treatments: A review, Science of The Total Environment. 443 (2013) 733-748. [23]Aktas O., Effect of S0/X0 ratio and acclimation on respirometry of activated sludge in the cometabolic biodegradation of phenolic compounds, Bioresour Technol. 111 (2012) 98-104. [24]Alvarez-Cohen L., Speitel G.E., Jr., Kinetics of aerobic cometabolism of chlorinated solvents, Biodegradation. 12 (2001) 105-126. [25]Haleyur N., Shahsavari E., Jain S.S., Koshlaf E., Ravindran V.B., Morrison P.D., Osborn A.M., Ball A.S., Influence of bioaugmentation and biostimulation on PAH degradation in aged contaminated soils: Response and dynamics of the bacterial community, J Environ Manage. 238 (2019) 49-58. [26]Yang Z., Xu X., Dai M., Wang L., Shi X., Guo R., Rapid degradation of 2,4-dichlorophenoxyacetic acid facilitated by acetate under methanogenic condition, Bioresource Technology. 232 (2017) 146-151. [27]Wu C.Y., Zhuang L., Zhou S.G., Li F.B., Li X.M., Fe(III)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01, FEMS Microbiol Ecol. 71 (2010) 106-113. [28]Hubert C., Voordouw G., Mayer B., Elucidating microbial processes in nitrate- and sulfate-reducing systems using sulfur and oxygen isotope ratios: The example of oil reservoir souring control, Geochimica et Cosmochimica Acta. 73 (2009) 3864-3879. [29]Gonick L., Wheelis M., The cartoon guide to genetics, 1983. [30]Han K., Levenspiel O., Extended monod kinetics for substrate, product, and cell inhibition, Biotechnology and bioengineering. 32 (1988) 430-447.
|