[1] 許珺佩、林耀豐(2010)。從定義與本質論點探討體育在教育上的價值。載於林瑞興主編,2010 年第三屆運動科學暨休閒遊憩管理學術研討會論文集(頁420-427)。屏東:國立屏東教育大學。
[2] Cao, Z., Hidalgo, G., Simon, T., Wei, S. E., & Sheikh, Y. (2019). OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(1), 172-186
[3] Fang, H. S., Xie, S., Tai, Y. W., & Lu, C. (2017). Rmpe: Regional multi-person pose estimation. Proceedings of the IEEE International Conference on Computer Vision,2334-2343.
[4] Güler, R. A., Neverova, N., & Kokkinos, I. (2018). Densepose: Dense human pose estimation in the wild. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 7297-7306.
[5] Oved, D., Pisapia, A., & Gudnason, A. (2020, June 16). Estimating 3D Poses of Athletes at Live Sporting Events. The New York Times, form the World Wide Web:
https://rd.nytimes.com/projects/estimating-3d-poses-of-athletes-at-live-sportingevents
[6] Nogueira, P. (2011). Motion capture fundamentals – a critical and comparative analysis on real world applications. Proceedings of the 7th Doctoral Symposium in Informatics Engineering, 303.
[7] Grant, F. S., Guilford, J. P., & West, G. F. (1966). Interpretation Theory in Applied Geophysics. New York: McGraw-Hill, 306-381.
[8] Marshall, S. V. (1978). Vehicle detection using a magnetic field sensor. IEEE Transactions on Vehicular Technology, 27(2), 65-68.
[9] Wynn, W., Frahm, C., Carroll, P., Clark, R., Wellhoner, J., & Wynn, M. (1975). Advanced superconducting gradiometer/magnetometer arrays and a novel signal processing technique. IEEE Transactions on Magnetics, 11(2), 701-707.
[10] Hashi, S., Tokunaga, Y., Yabukami, S., Toyoda, M., Ishiyama, K., Okazaki, Y., & Arai, K. I. (2005). Development of real-time and highly accurate wireless motion capture system utilizing soft magnetic core. IEEE Transactions on Magnetics, 41(10), 4191-4193.
[11] Ligorio, G., & Sabatini, A. M. (2016). Dealing with magnetic disturbances in human motion capture: A survey of techniques. Micromachines, 7(3), 43.
[12] van der Kruk, E., & Reijne, M. M. (2018). Accuracy of human motion capture systems for sport applications; state-of-the-art review. European Journal of Sport Science, 18(6), 806-819.
[13] Wu, T., McGinley, J., Duffy, V. G., & Liu, L. (2005). Application and validation of a mechanical motion capture-based industrial ergonomics assessment system (No. 2005-01-2733). SAE Technical Paper.
[14] Guerra-Filho, G. (2005). Optical Motion Capture: Theory and Implementation. RITA, 12(2), 61-90.
[15] Hurwitz, A. M., & Dotterweich, J. (2019). Vicon System Precision Analysis at US Army Combat Capabilities Development Command Army Research Laboratory. Combat Capabilities Development Command Army Research Laboratory Aberdeen Proving Ground United States.
[16] Vlasic, D., Adelsberger, R., Vannucci, G., Barnwell, J., Gross, M., Matusik, W., & Popović, J. (2007). Practical motion capture in everyday surroundings. ACM Transactions on Graphics (TOG), 26(3), 35-es.
[17] Jang, M., Kim, J. S., Kang, K., Um, S. H., Yang, S., & Kim, J. (2019, March). Development of Wearable Motion Capture System Using Fiber Bragg Grating Sensors for Measuring Arm Motion. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 994-995). IEEE.
[18] Colyer, S. L., Evans, M., Cosker, D. P., & Salo, A. I. (2018). A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system. Sports Medicine-
Open, 4(1), 1-15.
[19] Smisek, J., Jancosek, M., & Pajdla, T. (2011, November). 3D with Kinect. In 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops) (pp. 1154-1160). IEEE.
[20] Agarwal, A. (2006). Machine learning for image based motion capture (Doctoral dissertation, Institut National Polytechnique de Grenoble-INPG).
[21] Li, B., Chen, H., Chen, Y., Dai, Y., & He, M. (2017, July). Skeleton boxes: Solving skeleton based action detection with a single deep convolutional neural network. In 2017 IEEE International Conference on Multimedia & Expo Workshops
(ICMEW) (pp. 613-616). IEEE.
[22] Li, B., Dai, Y., Cheng, X., Chen, H., Lin, Y., & He, M. (2017, July). Skeleton based action recognition using translation-scale invariant image mapping and multi-scale deep CNN. In 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW) (pp. 601-604). IEEE.
[23] Luvizon, D. C., Picard, D., & Tabia, H. (2018). 2d/3d pose estimation and action recognition using multitask deep learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5137-5146.
[24] Li, B., He, M., Dai, Y., Cheng, X., & Chen, Y. (2018). 3D skeleton based action recognition by video-domain translation-scale invariant mapping and multi-scale dilated CNN. Multimedia Tools and Applications, 77(17), 22901-22921.
[25] Insafutdinov, E., Andriluka, M., Pishchulin, L., Tang, S., Levinkov, E., Andres, B., & Schiele, B. (2017). Arttrack: Articulated multi-person tracking in the wild. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 6457-6465.
[26] Rogez, G., Rihan, J., Ramalingam, S., Orrite, C., & Torr, P. H. (2008, June). Randomized trees for human pose detection. In 2008 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-8). IEEE.
[27] Urtasun, R., & Darrell, T. (2008, June). Sparse probabilistic regression for activityindependent human pose inference. In 2008 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-8). IEEE.
[28] Pishchulin, L., Andriluka, M., Gehler, P., & Schiele, B. (2013). Strong appearance and expressive spatial models for human pose estimation. Proceedings of the IEEE International Conference on Computer Vision, 3487-3494.
[29] Andriluka, M., Roth, S., & Schiele, B. (2009, June). Pictorial structures revisited: People detection and articulated pose estimation. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1014-1021). IEEE.
[30] Ionescu, C., Li, F., & Sminchisescu, C. (2011, November). Latent structured models for human pose estimation. In 2011 International Conference on Computer Vision (pp. 2220-2227). IEEE.
[31] Pishchulin, L., Andriluka, M., Gehler, P., & Schiele, B. (2013). Poselet conditioned pictorial structures. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 588-595.
[32] Toshev, A., & Szegedy, C. (2014). Deeppose: Human pose estimation via deep neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1653-1660.
[33] Andriluka, M., Pishchulin, L., Gehler, P., & Schiele, B. (2014). 2d human pose estimation: New benchmark and state of the art analysis. Proceedings of the IEEE Conference on computer Vision and Pattern Recognition, 3686-3693.
[34] Gkioxari, G., Hariharan, B., Girshick, R., & Malik, J. (2014). Using k-poselets for detecting people and localizing their keypoints. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3582-3589.
[35] Dantone, M., Gall, J., Leistner, C., & Van Gool, L. (2013). Human pose estimation using body parts dependent joint regressors. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3041-3048.
[36] 馮曉月與宋杰(2020)。二維人體姿態估計研究進展。計算機科學,47(11),128-136。
[37] Fischler, M. A., & Elschlager, R. A. (1973). The representation and matching of pictorial structures. IEEE Transactions on Computers, 100(1), 67-92.
[38] Andriluka, M., Roth, S., & Schiele, B. (2009, June). Pictorial structures revisited:People detection and articulated pose estimation. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1014-1021). IEEE.
[39] Andriluka, M., Pishchulin, L., Gehler, P., & Schiele, B. (2014). 2d human pose estimation: New benchmark and state of the art analysis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3686-3693.
[40] Cao, Z., Simon, T., Wei, S. E., & Sheikh, Y. (2017). Realtime multi-person 2d pose estimation using part affinity fields. Proceedings of the IEEE conference on computer vision and pattern recognition, 7291-7299.
[41] Sun, K., Xiao, B., Liu, D., & Wang, J. (2019). Deep high-resolution representation learning for human pose estimation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5693-5703.
[42] 圖像算法(2019 年 8 月 24 日):單人或多人的人體姿態骨架估計算法彙總。PCNOW。網址:https://pcnow.cc/p/OdY9gd6daa.html/
[43] Iqbal, M., Suhendra, A., & Mutiara, A. B. (2018, October). Similarity Analysis of Taekwondo Movement Using Data Motion. In 2018 Third International Conference on Informatics and Computing (ICIC) (pp. 1-6). IEEE.
[44] Ota, M., Tateuchi, H., Hashiguchi, T., Kato, T., Ogino, Y.,Yamagata, M., & Ichihashi, N. (2020). Verification of reliability and validity of motion analysis systems during bilateral squat using human pose tracking algorithm. Gait &
posture, 80, 62-67.
[45] Gámez Díaz, R. (2021). Digital Twin Coaching for Edge Computing Using Deep Learning Based 2D Pose Estimation (Doctoral dissertation, Universitéd'Ottawa/University of Ottawa).
[46] Ruan, X., & Tian, C. (2015, August). Dynamic gesture recognition based on improved DTW algorithm. In 2015 IEEE International Conference on Mechatronics and Automation (ICMA) (pp. 2134-2138). IEEE.
[47] 吳貴崗(2011)。使用 Kinect 體感攝影機藉由人體骨架進行人類動作識別。(碩士論文,國立台北科技大學,2011)。國立臺北科技大學資訊工程系研究所碩士論文,1-65。[48] Yasin, H., & Hayat, S. (2021). DeepSegment: Segmentation of motion capture data using deep convolutional neural network. Image and Vision Computing, 109, 104147.