[1]Mayergoyz, I. D., & Lawson, W. (1997). Basic electric circuit theory: a one-semester text. Gulf Professional Publishing.Chapter 5 pp.143-173.
[2]Fatoorehchi, H., Abolghasemi, H., & Zarghami, R. (2015). Analytical approximate solutions for a general nonlinear resistor–nonlinear capacitor circuit model. Applied Mathematical Modelling, 39(19), 6021-6031.
[3]陳柏霖. (2016). 氮化鎵在圖形化 4H-SiC 基板上的磊晶.國立交通大學,新竹.
[4]Huang, H., Wang, B. L., Wang, Y., Zou, J., & Zhou, L. (2008). Characteristics of silicon substrates fabricated using nanogrinding and chemo-mechanical-grinding. Materials Science and Engineering: A, 479(1-2), 373-379.
[5]Stanley, K. W. (1973). Non-linear resistors. Radio and Electronic Engineer, 43(10), 609-612.
[6]De Pablo, P. J., Gómez-Navarro, C., Colchero, J., Serena, P. A., Gómez-Herrero, J., & Baró, A. M. (2002). Nonlinear resistance versus length in single-walled carbon nanotubes. Physical Review Letters, 88(3), 036804.
[7]Becker, J. A., Green, C. B., & Pearson, G. (1946). Properties and uses of thermistors—Thermally sensitive resistors. Electrical Engineering, 65(11), 711-725.
[8]Levine, J. D. (1975). Theory of varistor electronic properties. Critical Reviews in Solid State and Material Sciences, 5(4), 597-608.
[9]Denisov, B. N. (2007). A photoresistor as a multifunctional optoelectronic element. Journal of Communications Technology and Electronics, 52, 478-481.
[10]Mayergoyz, I. D., & Lawson, W. (1997). Basic electric circuit theory: a one-semester text. Gulf Professional Publishing.
[11]郭倩丞. (2007). 高密度分波多工器 (DWDM) 濾光片的應力與溫飄特性研究(Doctoral dissertation).國立中央大學,桃園.
[12]高郁婷, & 李威儀. (2010). 蕭特基紫外光偵測器製作於獨立式氮化鎵基板上之研究(Doctoral dissertation).國立交通大學,新竹.
[13]Singh, J., & Wolfe, D. E. (2005). Review Nano and macro-structured component fabrication by electron beam-physical vapor deposition (EB-PVD). Journal of materials Science, 40, 1-26.
[14]Floro, J. A., Chason, E., Cammarata, R. C., & Srolovitz, D. J. (2002). Physical origins of intrinsic stresses in Volmer–Weber thin films. MRS bulletin, 27(1), 19-25.
[15]Utke, I., Friedli, V., Amorosi, S., Michler, J., & Hoffmann, P. (2006). Measurement and simulation of impinging precursor molecule distribution in focused particle beam deposition/etch systems. Microelectronic engineering, 83(4-9), 1499-1502.
[16]市村正也. 真空技術超入門. Journal of the Vacuum Society of Japan, 2015, 58.8: 273-281.
[17]Miccoli, I., Edler, F., Pfnür, H., & Tegenkamp, C. (2015). The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems. Journal of Physics: Condensed Matter, 27(22), 223201.
[18]關自強. (2014). ITO薄膜方塊電阻测試方法的探討.真空, 51(3), 44-48.
[19]Schuetze, A. P., Lewis, W., Brown, C., & Geerts, W. J. (2004). A laboratory on the four-point probe technique. American Journal of Physics, 72(2), 149-153.
[20]Li, J. C., Wang, Y., & Ba, D. C. (2012). Characterization of semiconductor surface conductivity by using microscopic four-point probe technique. Physics Procedia, 32, 347-355.
[21]Sze, S. M. (2008). Semiconductor devices: physics and technology. John wiley & sons.
[22]Petersen, C. L., Hansen, T. M., Bøggild, P., Boisen, A., Hansen, O., Hassenkam, T., & Grey, F. (2002). Scanning microscopic four-point conductivity probes. Sensors and Actuators A: Physical, 96(1), 53-58.
[23]Casady, J. B., & Johnson, R. W. (1996). Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid-State Electronics, 39(10), 1409-1422.
[24]Dreike, P. L., Fleetwood, D. M., King, D. B., Sprauer, D. C., & Zipperian, T. E. (1994). An overview of high-temperature electronic device technologies and potential applications. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 17(4), 594-609.
[25]Nader, M., Aldinger, F., & Hoffmann, M. J. (1999). Influence of the α/β-SiC phase transformation on microstructural development and mechanical properties of liquid phase sintered silicon carbide. Journal of Materials Science, 34(6), 1197-1204.
[26]許欣怡, & 張立. (2006). (100) 矽基材上立方晶碳化矽層對方向性鑽石形成之影響 (Doctoral dissertation).國立交通大學,新竹
[27]李文鴻.(2001).電子迴旋共振化學氣相沉積碳化矽薄膜之低溫成長的研究(Doctoral dissertation).國立臺灣科技大學,台北
[28]Deva Reddy, J. (2007). Mechanical properties of silicon carbide (SiC) thin films.
[29]Scheeper, P. R., Van der Donk, A. G. H., Olthuis, W., & Bergveld, P. (1994). A review of silicon microphones. Sensors and actuators A: Physical, 44(1), 1-11.
[30]Petersen, K. E. (1982). Silicon as a mechanical material. Proceedings of the IEEE, 70(5), 420-457.
[31]詹明賢.(2014).單晶與多晶矽基板鑽石線鋸加工之切屑分析研究(碩士論文).國立臺灣科技大學,台北[32]汪建民. (1999). 陶瓷技術手冊. 中華民國產業科技發展協進會, 中華民國冶金學會, 413-414.
[33]鄧力. (2018).國内外特種玻璃研發與應用新動態.玻璃與搪瓷,46(1), 38-48.
[34]彭壽, & 張冲. (2012).平板玻璃在光電顯示領域的應用與發展趨勢.中國玻璃, (2), 3-8.
[35]Zachariasen, W. H. (1932). The atomic arrangement in glass. Journal of the American Chemical Society, 54(10), 3841-3851.
[36]Kingery, W. D., Bowen, H. K., & Uhlmann, D. R. (1976). Introduction to ceramics (Vol. 17). John wiley & sons.
[37]林怡芬,郭正次. (2004).包覆鐵碳奈米結構之製程和磁退火後處理及性質分析 (Doctoral dissertation). .國立交通大學,新竹
[38]De Los Santos Valladares, L., Ionescu, A., Holmes, S., Barnes, C. H., Bustamante Domínguez, A., Avalos Quispe, O., ... & Majima, Y. (2014). Characterization of Ni thin films following thermal oxidation in air. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 32(5), 051808.
[39]劉世锋,宋璽,薛彤,馬寧,王岩, &王立強. (2020). 鈦合金及鈦基複合材料在航空航天的應用和發展. 航空材料學報, 40(3), 77-94.
[40]Chawla, V., Jayaganthan, R., Chawla, A. K., & Chandra, R. (2008). Morphological study of magnetron sputtered Ti thin films on silicon substrate. Materials Chemistry and Physics, 111(2-3), 414-418.