[1]ASTM Int. F2792-12a. Standard Terminology for Additive Manufacturing Technologies. 2012. Available: https://www.astm.org/f2792-12.html, Accessed on: Mar. 15, 2023.
[2]C. Klahn, B. Leutenecker, and M. Meboldt, “Design Strategies for the Process of Additive Manufacturing,” Procedia CIRP, vol. 36, pp. 230–235, 2015.
[3]K. Kellens, M. Baμmers, T. G. Gutowski, W. Flanagan, R. Lifset, and J. R. Duflou1, “Environmental Dimensions of Additive Manufacturing: Mapping Application Domains and Their Environmental Implications,” Journal of Industrial Ecology, vol. 21, no. S1, pp. S49–S68, 2017.
[4]Q. C. Liu, J. Elambasseril, S. J. Sun, M. Leary, M. Brandt, and P. K. Sharp, “The effect of manufacturing defects on the fatigue behavior of Ti-6Al-4V specimens fabricated using selective laser melting,” Advanced Materials Research, vol. 891, pp. 1519–1524, 2014.
[5]H. Gong, K. Rafi, H. Gu, G. J. Ram, T. Starr, and B. Stucker, “Influence of defects on mechanical properties of Ti–6Al–4 V components produced by selective laser melting and electron beam melting,” Materials & Design, vol. 86, pp. 545–554, 2015.
[6]S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Materials & Design, vol. 95, pp. 431–445, 2016.
[7]H. C. Yang, M. Adnan, C. H. Huang, F. T. Cheng, Y. L. Lo, and C. H. Hsu, “An intelligent metrology architecture with AVM for metal additive manufacturing,” IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 2886–2893, 2019.
[8]D. Cannizzaro, A. G. Varrella, S. Paradiso, R. Sampieri, Y. Chen, A. Macii, E. Patti, and S. D. Cataldo, “In-Situ Defect Detection of Metal Additive Manufacturing: An Integrated Framework,” IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 1, pp. 74–86, 2022.
[9]X. Lin, Q. Wang, J. Y. H. Fuh, and K.Zhu, “Motion feature based melt pool monitoring for selective laser melting process,” Journal of Materials Processing Technology, vol. 303, 2022, 117523.
[10]M. Adnan, H. C. Yang, T. H. Kuo, F. T. Cheng, and H. C. Tran, “MPI-Based System 2 for Determining LPBF Process Control Thresholds and Parameters,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6553–6560, 2021.
[11]郭宗翰,“開發雷射粉床熔融機台之回授控制迴路”,國立成功大學製造資訊與系統研究所碩士論文,2021。[12]D. Greitemeier, C. D. Donne, F. Syassen, J. Eufigner, and T. Melz, “Effect of surface roughness on fatigue performance of additive manufactured Ti–6Al–4V,” Materials Science and Technology, vol. 32, issue 7, pp. 629–634, 2016.
[13]Z. Smoqi, A. Gaikwad, B. Bevans, M. H. Kobir, J. Craig, A. A.-Haj, A. Peralta, and P. Rao, “Monitoring and prediction of porosity in laser powder bed fusion using physics-informed melt pool signatures and machine learning,” Journal of Materials Processing Technology, vol. 304, 2022, 117550.
[14]F. T. Cheng, H. C. Huang, and C. A. Kao, “Developing an Automatic Virtual Metrology System,” IEEE Transactions on Automation Science and Engineering, vol. 9, no. 1, pp. 181–188, January 2012.
[15]G. Couloris, J.Dollimore, T.Kindberg, and G. Blair, “Distributed System: Concept and Design,” Distributed System: Concept and Design 5th ed. Country: Pearson, 2011.
[16]OPC Foundation, “OPC Unified Architecture Specification – Part 1: Overview and Concepts Release 1.04,” 2017.
Available: https://reference.opcfoundation.org/Core/Part1/v104/docs/, Accessed on: Apr. 11, 2023.
[17]umati: Based on OPC UA.
Available: https://opcconnect.opcfoundation.org/2018/10/umati-based-on-opc-ua/, Accessed on: Apr. 14, 2023.
[18]R. Olaf, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, Proceedings, Part III 18. Springer International Publishing, Oct 5–9, 2015.
[19]D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014.
[20]楊宸維,“金屬積層製造之逐層品質評估與製程異常檢測方法”,國立成功大學製造資訊與系統研究所碩士論文,2022。