1.Callister, W.D. and D.G. Rethwisch, Materials Science and Engineering: An Introduction, 8th Edition. 2009: Wiley.
2.Musil, J., Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surf. Coat. Technol., 2012. 207: p. 50-65.
3.Greer, J.R. and J.T.M. De Hosson, Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater Sci., 2011. 56(6): p. 654-724.
4.Wang, Y.X. and S. Zhang, Toward hard yet tough ceramic coatings. Surf. Coat. Technol., 2014. 258: p. 1-16.
5.Musil, J. and J. Vlček, Magnetron sputtering of films with controlled texture and grain size. Mater. Chem. Phys., 1998. 54(1): p. 116-122.
6.Vepřek, S. and S. Reiprich, A concept for the design of novel superhard coatings. Thin Solid Films, 1995. 268(1): p. 64-71.
7.Musil, J., Hard and superhard nanocomposite coatings. Surf. Coat. Technol., 2000. 125(1): p. 322-330.
8.Musil, J. and J. Vlček, Magnetron sputtering of hard nanocomposite coatings and their properties. Surf. Coat. Technol., 2001. 142-144: p. 557-566.
9.Diserens, M., J. Patscheider, and F. Lévy, Improving the properties of titanium nitride by incorporation of silicon. Surf. Coat. Technol., 1998. 108-109: p. 241-246.
10.Vepřek, S., et al., Recent progress in the superhard nanocrystalline composites: towards their industrialization and understanding of the origin of the superhardness1Invited paper presented at the Int. Conf. on Metallurgical Coatings and Thin Films, ICMCTF 98, San Diego, April 1998. Dedicated to our colleague and friend, Professor Dr. Jan Janča at the occasion of his 60th birthday.1. Surf. Coat. Technol., 1998. 108-109: p. 138-147.
11.Veprek, S., et al., Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV=80 to ≥105 GPa. Surf. Coat. Technol., 2000. 133-134: p. 152-159.
12.Makino, Y. and K. Nogi, Synthesis of pseudobinary Cr-Al-N films with B1 structure by rf-assisted magnetron sputtering method. Surf. Coat. Technol., 1998. 98(1): p. 1008-1012.
13.Mo, J.L., et al., Impact wear and abrasion resistance of CrN, AlCrN and AlTiN PVD coatings. Surf. Coat. Technol., 2013. 215: p. 170-177.
14.Romero, J., et al., CrAlN coatings deposited by cathodic arc evaporation at different substrate bias. Thin Solid Films, 2006. 515(1): p. 113-117.
15.Spain, E., et al., Characterisation and applications of Cr–Al–N coatings. Surf. Coat. Technol., 2005. 200(5): p. 1507-1513.
16.Kumar, K.M., N.T. Mathew, and M. Baburaj, Sustainable milling of Ti-6Al-4 V super alloy using AlCrN and TiAlN coated tools. Mater. Today:. Proc., 2021.
17.Hu, C., et al., Structural, mechanical and thermal properties of CrAlNbN coatings. Surf. Coat. Technol., 2018. 349: p. 894-900.
18.Frankenthal, R.P., et al., Thermal Oxidation of Niobium Nitride Films at Temperatures from 20°–400°C: I . The Surface Reaction. J. Electrochem. Soc., 1983. 130(10): p. 2056-2060.
19.Portillio, B.I. and S.K. Varma, Oxidation Behavior of Nb-20Mo-15Si-25Cr and Nb-20Mo-15Si-25Cr-5B Alloys. Metall Mater Trans A Phys Metall Mater Sci, 2012. 43(1): p. 147-154.
20.Trindade, B., et al., Effect of Nb target power on the structure, mechanical properties, thermal stability and oxidation resistance of Cr–Al–Nb–N coatings. Surf. Coat. Technol., 2016. 285: p. 270-277.
21.Endrino, J.L., G.S. Fox-Rabinovich, and C. Gey, Hard AlTiN, AlCrN PVD coatings for machining of austenitic stainless steel. Surf. Coat. Technol., 2006. 200(24): p. 6840-6845.
22.Budna, K.P., et al., Effect of nitrogen-incorporation on structure, properties and performance of magnetron sputtered CrB2. Surf. Coat. Technol., 2008. 202(13): p. 3088-3093.
23.Mayrhofer, P.H., et al., Microstructural design of hard coatings. Prog. Mater Sci., 2006. 51(8): p. 1032-1114.
24.Vepřek, S., New development in superhard coatings: the superhard nanocrystalline-amorphous composites. Thin Solid Films, 1998. 317(1): p. 449-454.
25.Baker, M.A., et al., Evaluating the microstructure and performance of nanocomposite PVD TiAlBN coatings. Surf. Coat. Technol., 2002. 151-152: p. 338-343.
26.Tritremmel, C., et al., Microstructure and mechanical properties of nanocrystalline Al–Cr–B–N thin films. Surf. Coat. Technol., 2012. 213: p. 1-7.
27.Chang, Y.-Y., et al., Tribological and mechanical properties of AlCrBN hard coating deposited using cathodic arc evaporation. Surf. Coat. Technol., 2022. 432: p. 128097.
28.鍾承熹, 氮化鋁鉻硼硬質薄膜之機械性質與磨潤性能, in 機械與電腦輔助工程系碩士班. 2021, 國立虎尾科技大學: 雲林縣. p. 138.29.Wang, Q.M. and K.H. Kim, Microstructural control of Cr–Si–N films by a hybrid arc ion plating and magnetron sputtering process. Acta Mater., 2009. 57(17): p. 4974-4987.
30.Raveh, A., et al., Thermal stability of nanostructured superhard coatings: a review. Surf. Coat. Technol., 2007. 201(13): p. 6136-6142.
31.Chang, Y.-Y., et al., High temperature oxidation resistance of CrAlSiN coatings synthesized by a cathodic arc deposition process. J. Alloys Compd., 2008. 461(1): p. 336-341.
32.Chen, H.-W., et al., Oxidation behavior of Si-doped nanocomposite CrAlSiN coatings. Surf. Coat. Technol., 2010. 205(5): p. 1189-1194.
33.Polcar, T. and A. Cavaleiro, High-temperature tribological properties of CrAlN, CrAlSiN and AlCrSiN coatings. Surf. Coat. Technol., 2011. 206(6): p. 1244-1251.
34.Chang, Y.-Y. and H.-M. Lai, Wear behavior and cutting performance of CrAlSiN and TiAlSiN hard coatings on cemented carbide cutting tools for Ti alloys. Surf. Coat. Technol., 2014. 259: p. 152-158.
35.Chim, Y.C., et al., Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films, 2009. 517(17): p. 4845-4849.
36.Knutsson, A., et al., Thermally enhanced mechanical properties of arc evaporated Ti0.34Al0.66N/TiN multilayer coatings. J. Appl. Phys., 2010. 108(4): p. 044312.
37.Hemmati, A., J. Paiva, and S.C. Veldhuis, Thermal stability and machining performance of arc evaporated Ti1-xAlxN hard PVD coatings with x=0.5 – 0.73 ratios using an integrative approach. Materialia, 2021. 17: p. 101132.
38.Chen, Y.H., et al., Enhanced thermal stability and fracture toughness of TiAlN coatings by Cr, Nb and V-alloying. Surf. Coat. Technol., 2018. 342: p. 85-93.
39.Mikula, M., et al., Toughness enhancement in highly NbN-alloyed Ti-Al-N hard coatings. Acta Mater., 2016. 121: p. 59-67.
40.Veprek, S. and M.J.G. Veprek-Heijman, Industrial applications of superhard nanocomposite coatings. Surf. Coat. Technol., 2008. 202(21): p. 5063-5073.
41.Pfeiler, M., et al., Improved oxidation resistance of TiAlN coatings by doping with Si or B. Surf. Coat. Technol., 2009. 203(20): p. 3104-3110.
42.Park, I.-W., et al., Deposition and mechanical evaluation of superhard Ti–Al–Si–N nanocomposite films by a hybrid coating system. Thin Solid Films, 2004. 447-448: p. 443-448.
43.Martin, P.J., et al., Nanocomposite Ti–Si–N, Zr–Si–N, Ti–Al–Si–N, Ti–Al–V–Si–N thin film coatings deposited by vacuum arc deposition. Surf. Coat. Technol., 2005. 200(7): p. 2228-2235.
44.Tillmann, W. and M. Dildrop, Influence of Si content on mechanical and tribological properties of TiAlSiN PVD coatings at elevated temperatures. Surf. Coat. Technol., 2017. 321: p. 448-454.
45.蔡孟蒓, 三元合金靶沉積氮化鋁鈦硼及氮化鋁鈦矽硬質薄膜之機械性質與磨潤性能, in 機械與電腦輔助工程系碩士班. 2018, 國立虎尾科技大學: 雲林縣. p. 179.46.Wheeler, J.M., et al., Deformation of Hard Coatings at Elevated Temperatures. Surf. Coat. Technol., 2014. 254: p. 382-387.
47.Chang, Y.-Y. and C.-Y. Hsiao, High temperature oxidation resistance of multicomponent Cr–Ti–Al–Si–N coatings. Surf. Coat. Technol., 2009. 204(6): p. 992-996.
48.Chang, Y.-Y. and L.-C. Chao, Effect of substrate bias voltage on the mechanical properties of AlTiN/CrTiSiN multilayer hard coatings. Vacuum, 2021. 190: p. 110241.
49.Aschauer, E., et al., Nano-structural investigation of Ti-Al-N/Mo-Si-B multilayer coatings: A comparative study by APT and HR-TEM. Vacuum, 2018. 157: p. 173-179.
50.Ning, L., S.C. Veldhuis, and K. Yamamoto, Investigation of wear behavior and chip formation for cutting tools with nano-multilayered TiAlCrN/NbN PVD coating. Int. J. Mach. Tools Manuf., 2008. 48(6): p. 656-665.
51.Fox-Rabinovich, G.S., et al., Wear behavior of adaptive nano-multilayered TiAlCrN/NbN coatings under dry high performance machining conditions. Surf. Coat. Technol., 2008. 202(10): p. 2015-2022.
52.Yeh, J.-W., et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater., 2004. 6(5): p. 299-303.
53.Cantor, B., Multicomponent high-entropy Cantor alloys. Prog. Mater Sci., 2021. 120: p. 100754.
54.Yeh, J.-W., Recent progress in high-entropy alloys. European Journal of Control - EUR J CONTROL, 2006. 31: p. 633-648.
55.Xin, Y., et al., High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities. ACS Catal., 2020. 10(19): p. 11280-11306.
56.Lewin, E., Multi-component and high-entropy nitride coatings—A promising field in need of a novel approach. J. Appl. Phys., 2020. 127(16): p. 160901.
57.Chang, H.-W., et al., Nitride films deposited from an equimolar Al–Cr–Mo–Si–Ti alloy target by reactive direct current magnetron sputtering. Thin Solid Films, 2008. 516(18): p. 6402-6408.
58.Hahn, R., et al., Toughness of Si alloyed high-entropy nitride coatings. Mater. Lett., 2019. 251: p. 238-240.
59.Lin, C.H., J.G. Duh, and J.W. Yeh, Multi-component nitride coatings derived from Ti–Al–Cr–Si–V target in RF magnetron sputter. Surf. Coat. Technol., 2007. 201(14): p. 6304-6308.
60.Lai, C.-H., et al., Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surf. Coat. Technol., 2006. 201(6): p. 3275-3280.
61.Shen, W.-J., et al., Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti)Nx coatings. Thin Solid Films, 2012. 520(19): p. 6183-6188.
62.Lo, W.-L., et al., Improvement of high entropy alloy nitride coatings (AlCrNbSiTiMo)N on mechanical and high temperature tribological properties by tuning substrate bias. Surf. Coat. Technol., 2020. 401: p. 126247.
63.Lin, Y.-C., et al., Improving the hardness of high entropy nitride (Cr0.35Al0.25Nb0.12Si0.08V0.20)N coatings via tuning substrate temperature and bias for anti-wear applications. Surf. Coat. Technol., 2020. 403: p. 126417.
64.Huang, P.-K. and J.-W. Yeh, Inhibition of grain coarsening up to 1000°C in (AlCrNbSiTiV)N superhard coatings. Scr. Mater., 2010. 62(2): p. 105-108.
65.Huang, P.-K. and J.-W. Yeh, Effects of substrate bias on structure and mechanical properties of (AlCrNbSiTiV)N coatings. J. Phys. D: Appl. Phys., 2009. 42(11): p. 115401.
66.黃俊瑋, 陰極電弧沉積鋁鈦矽鉻釩鋯高熵合金氮化物薄膜之機械性質研究, in 機械與電腦輔助工程系碩士班. 2020, 國立虎尾科技大學: 雲林縣. p. 86.67.Kretschmer, A., et al., Improving phase stability, hardness, and oxidation resistance of reactively magnetron sputtered (Al,Cr,Nb,Ta,Ti)N thin films by Si-alloying. Surf. Coat. Technol., 2021. 416: p. 127162.
68.Wang, J.-J. and F.-Y. Ouyang, Oxidation behavior of Al-Cr-Nb-Si-Zr high entropy nitride thin films at 850 °C. Corrosion Science, 2021. 187: p. 109467.
69.Tsai, D.-C., et al., Oxidation resistance and characterization of (AlCrMoTaTi)-Six-N coating deposited via magnetron sputtering. J. Alloys Compd., 2015. 647: p. 179-188.
70.Shen, W.J., et al., Superior Oxidation Resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50High-Entropy Nitride. J. Electrochem. Soc., 2013. 160(11): p. C531-C535.
71.Hsieh, M.-H., et al., Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings. Surf. Coat. Technol., 2013. 221: p. 118-123.
72.Ezugwu, E.O., J. Bonney, and Y. Yamane, An overview of the machinability of aeroengine alloys. J. Mater. Process. Technol., 2003. 134(2): p. 233-253.
73.Patel, U.S., et al., Influence of secondary carbides on microstructure, wear mechanism, and tool performance for different cermet grades during high-speed dry finish turning of AISI 304 stainless steel. Wear, 2020. 452-453: p. 203285.
74.Groover, M.P., Fundamentals of modern manufacturing: materials, processes, and systems. 2020: John Wiley & Sons.
75.Selvaraj, D.P. and P. Chandramohan, Optimization of surface roughness of AISI 304 austenitic stainless steel in dry turning operation using Taguchi design method. Journal of engineering science and technology, 2010. 5(3): p. 293-301.
76.Korkut, I., et al., Determination of optimum cutting parameters during machining of AISI 304 austenitic stainless steel. Mater. Des., 2004. 25(4): p. 303-305.
77.Abou-El-Hossein, K.A. and Z. Yahya, High-speed end-milling of AISI 304 stainless steels using new geometrically developed carbide inserts. J. Mater. Process. Technol., 2005. 162-163: p. 596-602.
78.Pereira, O., et al., Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304. J. Cleaner Prod., 2016. 139: p. 440-449.
79.Ben Fredj, N., H. Sidhom, and C. Braham, Ground surface improvement of the austenitic stainless steel AISI 304 using cryogenic cooling. Surf. Coat. Technol., 2006. 200(16): p. 4846-4860.
80.Naresh Babu, M., et al., End milling of AISI 304 steel using Minimum Quantity Lubrication. Measurement, 2019. 138: p. 681-689.
81.Chang, Y.-Y. and C.-C. Chuang, Deposition of Multicomponent AlTiCrMoN Protective Coatings for Metal Cutting Applications. Coatings, 2020. 10(7): p. 605.
82.Knutsson, A., et al., Machining performance and decomposition of TiAlN/TiN multilayer coated metal cutting inserts. Surf. Coat. Technol., 2011. 205(16): p. 4005-4010.
83.Fernández-Abia, A.I., et al., Behaviour of PVD Coatings in the Turning of Austenitic Stainless Steels. Procedia Eng., 2013. 63: p. 133-141.
84.Jianxin, D., et al., Wear mechanisms of cemented carbide tools in dry cutting of precipitation hardening semi-austenitic stainless steels. Wear, 2011. 270(7): p. 520-527.
85.Normalización, O.I.d., ISO 8688-2: 1989: Tool Life Testing in Milling - Part2 :End Milling. 1989: International Organization for Standarization.
86.Davim, J.P., Modern Machining Technology: A Practical Guide. 2011: Elsevier Science.
87.Shi, Y. and X.-c. Wu, Research on Oxidation Wear Behavior of a New Hot Forging Die Steel. J. Mater. Eng. Perform., 2017. 27: p. 176-185.
88.Jusman, Y., S.C. Ng, and N.A. Abu Osman, Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX. ScientificWorldJournal, 2014. 2014: p. 289817-289817.
89.Kwiecińska, B., S. Pusz, and B.J. Valentine, Application of electron microscopy TEM and SEM for analysis of coals, organic-rich shales and carbonaceous matter. Int. J. Coal Geol., 2019. 211: p. 103203.
90.Stephan, T., TOF-SIMS in cosmochemistry. Planet. Space Sci., 2001. 49(9): p. 859-906.
91.Huang, D., et al., Secondary ion mass spectrometry: The application in the analysis of atmospheric particulate matter. Anal. Chim. Acta, 2017. 989: p. 1-14.
92.Wang, Y., et al., Real-time synchrotron x-ray studies of low- and high-temperature nitridation of $c$-plane sapphire. Phys. Rev. B, 2006. 74(23): p. 235304.
93.Llovet, X., Microscopy | Electron Probe Microanalysis, in Encyclopedia of Analytical Science (Third Edition), P. Worsfold, et al., Editors. 2019, Academic Press: Oxford. p. 30-38.
94.杜正恭, 王凱正, and 蔡淑月, 電子微探儀. 科儀新知, 2009(170): p. 69-76.
95.Llovet, X., et al., Electron probe microanalysis: A review of recent developments and applications in materials science and engineering. Prog. Mater Sci., 2021. 116: p. 100673.
96.ISO26443, I.S., Fine ceramics (advanced ceramics, advanced technical ceramics) — Rockwell indentation test for evaluation of adhesion of ceramic coatings. 2008.
97.Saha, R. and W.D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater., 2002. 50: p. 23-38.
98.Wu, H., et al., Nano-mechanical characterization of plasma surface tungstenized layer by depth-sensing nano-indentation measurement. Appl. Surf. Sci., 2015: p. 160-167.
99.Bartosik, M., et al., Thermally-induced formation of hexagonal AlN in AlCrN hard coatings on sapphire: Orientation relationships and residual stresses. Surf. Coat. Technol., 2010. 205: p. 1320-1323.
100.Mendez, A., et al., Effect of Al content on the hardness and thermal stability study of AlTiN and AlTiBN coatings deposited by HiPIMS. Surf. Coat. Technol., 2021. 422: p. 127513.
101.Rother, B. and H. Kappl, Effects of low boron concentrations on the thermal stability of hard coatings. Surf. Coat. Technol., 1997. 96(2): p. 163-168.
102.Chen, W., et al., Comparison of microstructures, mechanical and tribological properties of arc-deposited AlCrN, AlCrBN and CrBN coatings on Ti-6Al-4V alloy. Surf. Coat. Technol., 2020. 404: p. 126429.
103.Holleck, H. and V. Schier, Multilayer PVD coatings for wear protection. Surf. Coat. Technol., 1995. 76-77: p. 328-336.
104.Hultman, L., et al., Interface structure in superhard TiN-SiN nanolaminates and nanocomposites: Film growth experiments and ab initio calculations. Phys. Rev. B, 2007. 75(15): p. 155437.
105.Hu, C., L. Chen, and V. Moraes, Structure, mechanical properties, thermal stability and oxidation resistance of arc evaporated CrAlBN coatings. Surf. Coat. Technol., 2021. 417: p. 127191.
106.Kim, H.S. and M.B. Bush, The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostructured Materials, 1999. 11(3): p. 361-367.
107.Suh, N.P. and H.C. Sin, The genesis of friction. Wear, 1981. 69(1): p. 91-114.
108.Challen, J.M. and P.L.B. Oxley, An explanation of the different regimes of friction and wear using asperity deformation models. Wear, 1979. 53(2): p. 229-243.
109.Yuan, Y., et al., Relationship of microstructure, mechanical properties and hardened steel cutting performance of TiSiN-based nanocomposite coated tool. J. Manuf. Processes, 2017. 28: p. 399-409.
110.Shtansky, D.V., et al., Comparative investigation of Al- and Cr-doped TiSiCN coatings. Surf. Coat. Technol., 2011. 205(19): p. 4640-4648.
111.Leyland, A. and A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear, 2000. 246(1): p. 1-11.
112.Naik, S.N. and S.M. Walley, The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. J. Mater. Sci., 2020. 55(7): p. 2661-2681.
113.Adesina, A.Y., Z.M. Gasem, and A.M. Kumar, Electrochemical evaluation of the corrosion protectiveness and porosity of vacuum annealed CrAlN and TiAlN cathodic arc physical vapor deposited coatings. Mater. Corros., 2019. 70(9): p. 1601-1616.
114.Moreno-Camacho, C.A., et al., Sustainability metrics for real case applications of the supply chain network design problem: A systematic literature review. J. Cleaner Prod., 2019. 231: p. 600-618.
115.Mayrhofer, P.H., et al., Thermally induced self-hardening of nanocrystalline Ti–B–N thin films. J. Appl. Phys., 2006. 100(4): p. 044301.
116.Chang, S.-Y., et al., Improved Diffusion-Resistant Ability of Multicomponent Nitrides: From Unitary TiN to Senary High-Entropy (TiTaCrZrAlRu)N. JOM, 2013. 65(12): p. 1790-1796.
117.Oliveira, J.C., A. Cavaleiro, and M.T. Vieira, Influence of Al(Er) interlayer on the mechanical properties of AlN(Er) coatings. Surf. Coat. Technol., 2002. 151-152: p. 466-470.
118.Ni, L., et al., Structure and mechanical properties of TiAlCrSiN coatings deposited on Ti(C,N)-NbC-Ni cermets with varied Mo2C contents. Int. J. Refract. Met. Hard Mater, 2020. 86: p. 105083.
119.Kim, Y.-C., et al., Compositional and structural analysis of aluminum oxide films prepared by plasma-enhanced chemical vapor deposition. Thin Solid Films, 1994. 237(1): p. 57-65.
120.Simon, D., C. Perrin, and J. Bardolle, ESCA study of Nb and Ti oxides. Applications to the determination of the nature of the superficial films formed during the oxidation of Nb-Ti and Nb-Ti alloys. J. Microsc. Spectrosc. Electron.;(France), 1976. 1(2).
121.Blasco, T., et al., The state of Ti in titanoaluminosilicates isomorphous with zeolite .beta. JACS, 1993. 115(25): p. 11806-11813.
122.Sanjines, R., et al., Electronic structure of anatase TiO2 oxide. J. Appl. Phys., 1994. 75(6): p. 2945-2951.
123.Watson, I., J.A. Connor, and R. Whyman, Non-crystalline chromium, molybdenum and tungsten phosphate films prepared by metal organic chemical vapour deposition. Thin Solid Films, 1991. 201(2): p. 337-349.
124.Shuttleworth, D., Preparation of metal-polymer dispersions by plasma techniques. An ESCA investigation. The Journal of Physical Chemistry, 1980. 84(12): p. 1629-1634.
125.Agostinelli, E., et al., An XPS study of the electronic structure of the ZnxCd1−xCr2(X = S, Se) spinel system. J. Phys. Chem. Solids, 1989. 50(3): p. 269-272.
126.Tan, B.J., K.J. Klabunde, and P.M. Sherwood, XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. JACS, 1991. 113(3): p. 855-861.
127.Gonbeau, D., et al., XPS study of thin films of titanium oxysulfides. Surf. Sci., 1991. 254(1-3): p. 81-89.
128.Castillo, R., et al., Influence of the Amount of Titania on the Texture and Structure of Titania Supported on Silica. J. Catal., 1996. 161(2): p. 524-529.
129.Dementjev, A.P., et al., Altered layer as sensitive initial chemical state indicator*. J. Vac. Sci. Technol. A, 1994. 12(2): p. 423-427.
130.Ong, J., et al., Electrochemical corrosion analyses and characterization of surface-modified titanium. Appl. Surf. Sci., 1993. 72(1): p. 7-13.
131.Halada, G.P. and C.R. Clayton, Photoreduction of hexavalent chromium during X‐ray photoelectron spectroscopy analysis of electrochemical and thermal films. J. Electrochem. Soc., 1991. 138(10): p. 2921.
132.Allen, G., et al., A study of a number of mixed transition metal oxide spinels using X-ray photoelectron spectroscopy. Appl. Surf. Sci., 1989. 37(1): p. 111-134.
133.Simon, D., C. Perrin, and P. Baillif, Electron spectrometry study (ESCA) of niobium and its oxides Application to the oxidation at high temperature and low oxygen pressure. C R Hebd Acad Sci, Ser C, 1976. 283(6): p. 241-244.
134.Garbassi, F., J.C.J. Bart, and G. Petrini, XPS study of tellurium—niobium and tellurium—tantalum oxide systems. J. Electron. Spectrosc. Relat. Phenom., 1981. 22(2): p. 95-107.
135.Sarma, D.D. and C.N.R. Rao, XPES studies of oxides of second- and third-row transition metals including rare earths. J. Electron. Spectrosc. Relat. Phenom., 1980. 20(1): p. 25-45.
136.Du, H., et al., Oxidation studies of crystalline CVD silicon nitride. J. Electrochem. Soc., 1989. 136(5): p. 1527.
137.Hagio, T., A. Takase, and S. Umebayashi, X-ray photoelectron spectroscopic studies of β-sialons. J. Mater. Sci. Lett., 1992. 11(12): p. 878-880.
138.Hanawa, T. and M. Ota, Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials, 1991. 12(8): p. 767-774.
139.Bahl, M., ESCA studies of some niobium compounds. J. Phys. Chem. Solids, 1975. 36(6): p. 485-491.
140.Özer, N., M.D. Rubin, and C.M. Lampert, Optical and electrochemical characteristics of niobium oxide films prepared by sol-gel process and magnetron sputtering A comparison. Sol. Energy Mater. Sol. Cells, 1996. 40(4): p. 285-296.
141.Gomes, M.A., et al., The Electrochromic Process at Nb2 O 5 Electrodes Prepared by Thermal Oxidation of Niobium. J. Electrochem. Soc., 1990. 137(10): p. 3067.
142.Yu, X.R. and H. Hantsche, Vertical differential charging in monochromatized small spot X‐ray photoelectron spectroscopy. Surf. Interface Anal., 1993. 20(7): p. 555-558.
143.Finster, J., et al., ESCA and SEXAFS investigations of insulating materials for ULSI microelectronics. Vacuum, 1990. 41(7-9): p. 1586-1589.
144.Gouin, X., et al., Characterization of the nitridation process of boric acid. J. Alloys Compd., 1995. 224(1): p. 22-28.
145.邱文通, 自潤性氮化釩鈦硬質薄膜之陰極電弧沉積製程設計與磨潤機制研究, in 機械與電腦輔助工程系碩士班. 2017, 國立虎尾科技大學: 雲林縣. p. 134.146.趙良展, 奈米多層氮化鋁鈦/氮化鉻鈦矽硬質薄膜之機械性質與切削加工性能, in 機械與電腦輔助工程系碩士班. 2019, 國立虎尾科技大學: 雲林縣. p. 123.147.Chang, Y.-Y., Y.-J. Yang, and S.-Y. Weng, Effect of interlayer design on the mechanical properties of AlTiCrN and multilayered AlTiCrN/TiSiN hard coatings. Surf. Coat. Technol., 2020. 389: p. 125637.
148.Veprek, S., et al., Avoiding the high-temperature decomposition and softening of (Al1−xTix)N coatings by the formation of stable superhard nc-(Al1−xTix)N/a-Si3N4 nanocomposite. Mater. Sci. Eng. A, 2004. 366(1): p. 202-205.
149.Carvalho, S., et al., Microstructure and mechanical properties of nanocomposite (Ti,Si,Al)N coatings. Thin Solid Films, 2001. 398-399: p. 391-396.