[1]BP. Statistical review of world energy. 2020; Available from: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
[2]Sciubba, J.D. 8 Billion People: A Milestone by the Numbers. 2022; Available from: https://www.prb.org/articles/8-billion-people/.
[3]Abermann, S., Non-vacuum processed next generation thin film photovoltaics: Towards marketable efficiency and production of CZTS based solar cells. Solar Energy, 2013. 94: p. 37-70.
[4]Karim, N.A., et al., Nanostructured photoanode and counter electrode materials for efficient Dye-Sensitized Solar Cells (DSSCs). Solar Energy, 2019. 185: p. 165-188.
[5]張正華, 有機與塑膠太陽能電池. 2007, 臺北市: 五南.
[6]Jolissaint, N., et al., Colored solar façades for buildings. Energy Procedia, 2017. 122: p. 175-180.
[7]經濟部能源局. 能源統計月報. 2023; Available from: https://www.esist.org.tw/publication/monthly_detail?Id=12618ab72d.
[8]Rosado, H.R.a.M.R.a.P. Energy. 2022; Available from: https://ourworldindata.org/renewable-energy#citation.
[9]UnitedNations. THE 17 GOALS. 2023; Available from: https://sdgs.un.org/goals.
[10]Freitag, M., et al., Dye-sensitized solar cells for efficient power generation under ambient lighting. Nature Photonics, 2017. 11(6): p. 372-378.
[11]Meen, T.H., et al., Optimization of the dye-sensitized solar cell performance by mechanical compression. Nanoscale Research Letters, 2014. 9(1): p. 523.
[12]Tsai, J.K., et al., Effect of compressed TiO2 nanoparticle thin film thickness on the performance of dye-sensitized solar cells. Nanoscale Research Letters, 2013. 8(1): p. 459.
[13]Chodos, A., J. Ouellette, and E.J.A.P.S.N. Tretkoff, This month in physics history. 2009. 18(4): p. 5-7.
[14]Wolf, M.J.P.o.t.I., Limitations and possibilities for improvement of photovoltaic solar energy converters: Part I: Considerations for earth's surface operation. 1960. 48(7): p. 1246-1263.
[15]Thankappan, A. and S. Thomas, Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation. 2018: Elsevier Science.
[16]de Wild-Scholten, M.J., Energy payback time and carbon footprint of commercial photovoltaic systems. Solar Energy Materials and Solar Cells, 2013. 119: p. 296-305.
[17]Kalogirou, S.A., Solar energy engineering: processes and systems. 2013: Academic press.
[18]Ajayan, J., et al., A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies. Superlattices and Microstructures, 2020. 143: p. 106549.
[19]Hosseini, T., et al., Concrete Embedded Dye-Synthesized Photovoltaic Solar Cell. Scientific Reports, 2013. 3(1): p. 2727.
[20]Yun, M.J., et al., Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells. Scientific Reports, 2016. 6(1): p. 34249.
[21]Miles, R.W., K.M. Hynes, and I. Forbes, Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues. Progress in Crystal Growth and Characterization of Materials, 2005. 51(1): p. 1-42.
[22]Agrawal, A., et al., Advancements, frontiers and analysis of metal oxide semiconductor, dye, electrolyte and counter electrode of dye sensitized solar cell. Solar Energy, 2022. 233: p. 378-407.
[23]Pagliaro, M., R. Ciriminna, and G. Palmisano, BIPV: merging the photovoltaic with the construction industry. 2010. 18(1): p. 61-72.
[24]Dutta, P.S., 3.02 - Bulk Growth of Crystals of III–V Compound Semiconductors, in Comprehensive Semiconductor Science and Technology, P. Bhattacharya, R. Fornari, and H. Kamimura, Editors. 2011, Elsevier: Amsterdam. p. 36-80.
[25]El Chaar, L., L.A. lamont, and N. El Zein, Review of photovoltaic technologies. Renewable and Sustainable Energy Reviews, 2011. 15(5): p. 2165-2175.
[26]Kazmerski, L.L., Photovoltaics: A review of cell and module technologies. Renewable and Sustainable Energy Reviews, 1997. 1(1): p. 71-170.
[27]Saint-Cast, P., et al., High-Efficiency c-Si Solar Cells Passivated With ALD and PECVD Aluminum Oxide. IEEE Electron Device Letters, 2010. 31(7): p. 695-697.
[28]Feng, P., et al., Improving the Blue Response and Efficiency of Multicrystalline Silicon Solar Cells by Surface Nanotexturing. IEEE Electron Device Letters, 2016. 37(3): p. 306-309.
[29]Allouhi, A., et al., Up-to-date literature review on Solar PV systems: Technology progress, market status and R&D. Journal of Cleaner Production, 2022. 362: p. 132339.
[30]Kim, M.R. and D. Ma, Quantum-Dot-Based Solar Cells: Recent Advances, Strategies, and Challenges. The Journal of Physical Chemistry Letters, 2015. 6(1): p. 85-99.
[31]Algora, C., et al., A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns. IEEE Transactions on Electron Devices, 2001. 48(5): p. 840-844.
[32]Fthenakis, V.M. and H.C. Kim, CdTe photovoltaics: Life cycle environmental profile and comparisons. Thin Solid Films, 2007. 515(15): p. 5961-5963.
[33]Xiao, J., et al., Systematic investigation of the influence of CdTe QDs size on the toxic interaction with human serum albumin by fluorescence quenching method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010. 76(1): p. 93-97.
[34]Song, Y., et al., Parallel comparative studies on the toxic effects of unmodified CdTe quantum dots, gold nanoparticles, and carbon nanodots on live cells as well as green gram sprouts. Talanta, 2013. 116: p. 237-244.
[35]Nima, K. and Y. Nurul Amziah Md, Copper-Indium-Gallium-diSelenide (CIGS) Nanocrystalline Bulk Semiconductor as the Absorber Layer and Its Current Technological Trend and Optimization, in Nanoelectronics and Materials Development, K. Abhijit, Editor. 2016, IntechOpen: Rijeka. p. Ch. 3.
[36]Ramanathan, K., et al., Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin‐film solar cells. 2003. 11(4): p. 225-230.
[37]Kishore Kumar, D., et al., Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): A review. Materials Science for Energy Technologies, 2020. 3: p. 472-481.
[38]Michaels, H., et al., Dye-sensitized solar cells under ambient light powering machine learning: towards autonomous smart sensors for the internet of things. Chemical Science, 2020. 11(11): p. 2895-2906.
[39]Aslam, A., et al., Dye-sensitized solar cells (DSSCs) as a potential photovoltaic technology for the self-powered internet of things (IoTs) applications. Solar Energy, 2020. 207: p. 874-892.
[40]Sharma, D., R. Jha, and S. Kumar, Quantum dot sensitized solar cell: Recent advances and future perspectives in photoanode. Solar Energy Materials and Solar Cells, 2016. 155: p. 294-322.
[41]Martí, A., et al., Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell. Thin Solid Films, 2006. 511-512: p. 638-644.
[42]Abdulrazzaq, O.A., et al., Organic Solar Cells: A Review of Materials, Limitations, and Possibilities for Improvement. Particulate Science and Technology, 2013. 31(5): p. 427-442.
[43]Asghar, M.I., et al., Device stability of perovskite solar cells – A review. Renewable and Sustainable Energy Reviews, 2017. 77: p. 131-146.
[44]Abdullah, H., et al., ELECTRON TRANSPORT INSIDE NANOPOROUS ZNO-BASED DYE-SENSITIZED SOLAR CELL. 2012.
[45]Sahoo, S.K., B. Manoharan, and N. Sivakumar, Chapter 1 - Introduction: Why Perovskite and Perovskite Solar Cells?, in Perovskite Photovoltaics, S. Thomas and A. Thankappan, Editors. 2018, Academic Press. p. 1-24.
[46]Khir, H., et al., Recent advancements and challenges in flexible low temperature dye sensitised solar cells. Sustainable Energy Technologies and Assessments, 2022. 53: p. 102745.
[47]Omar, A., M.S. Ali, and N. Abd Rahim, Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review. Solar Energy, 2020. 207: p. 1088-1121.
[48]Belessiotis, G.V., et al., Universal electrolyte for DSSC οperation under both simulated solar and indoor fluorescent lighting. Materials Chemistry and Physics, 2022. 277: p. 125543.
[49]Calogero, G., et al., A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells. 2011. 4(5): p. 1838-1844.
[50]Subalakshmi, K., et al., Platinum-free metal sulfide counter electrodes for DSSC applications: Structural, electrochemical and power conversion efficiency analyses. Solar Energy, 2019. 193: p. 507-518.
[51]Hagfeldt, A., et al., Dye-Sensitized Solar Cells. Chemical Reviews, 2010. 110(11): p. 6595-6663.
[52]Tulloch, G.E., Light and energy—dye solar cells for the 21st century. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 164(1): p. 209-219.
[53]Toivola, M., et al., Nanostructured dye solar cells on flexible substrates. 2009. 33(13): p. 1145-1160.
[54]O'Regan, B. and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353(6346): p. 737-740.
[55]張羽成, 染料敏化與鈣鈦礦太陽能電池之界面電荷傳遞動力學研究, in 應用化學系所. 2014, 國立交通大學. p. 1-89.
[56]Sharma, K., V. Sharma, and S.S. Sharma, Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Research Letters, 2018. 13(1): p. 381.
[57]Holmberg, S., et al., 3-D Micro and Nano Technologies for Improvements in Electrochemical Power Devices. 2014. 5(2): p. 171-203.
[58]Tran, Q.-P., J.-S. Fang, and T.-S. Chin, Properties of fluorine-doped SnO2 thin films by a green sol–gel method. Materials Science in Semiconductor Processing, 2015. 40: p. 664-669.
[59]Samantaray, M.R., et al., Synergetic Effects of Hybrid Carbon Nanostructured Counter Electrodes for Dye-Sensitized Solar Cells: A Review. 2020. 13(12): p. 2779.
[60]Francis, O.I. and A.J.N.S. Ikenna, Review of dye-sensitized solar cell (DSSCs) development. 2021. 13(12): p. 496-509.
[61]Shahzad, N., et al., Counter electrode materials based on carbon nanotubes for dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2022. 159: p. 112196.
[62]Basheer, B., et al., An overview on the spectrum of sensitizers: The heart of Dye Sensitized Solar Cells. Solar Energy, 2014. 108: p. 479-507.
[63]Mehmood, U., et al., Recent Advances in Dye Sensitized Solar Cells. Advances in Materials Science and Engineering, 2014. 2014: p. 974782.
[64]Iftikhar, H., et al., Progress on Electrolytes Development in Dye-Sensitized Solar Cells. 2019. 12(12): p. 1998.
[65]Raut, P., et al., A Review on Gel Polymer Electrolytes for Dye-Sensitized Solar Cells. 2022. 13(5): p. 680.
[66]Kang, M.-S., K.-S. Ahn, and J.-W.J.J.o.p.s. Lee, Quasi-solid-state dye-sensitized solar cells employing ternary component polymer-gel electrolytes. 2008. 180(2): p. 896-901.
[67]Saidi, N.M., et al., Influence of different concentrations of 4-tert-butyl-pyridine in a gel polymer electrolyte towards improved performance of Dye-Sensitized Solar Cells (DSSC). Solar Energy, 2021. 216: p. 111-119.
[68]Li, D., et al., Optimization the solid-state electrolytes for dye-sensitized solar cells. 2009. 2(3): p. 283-291.
[69]Wu, J., et al., Counter electrodes in dye-sensitized solar cells. Chemical Society Reviews, 2017. 46(19): p. 5975-6023.
[70]Li, K., et al., Low temperature fabrication of efficient porous carbon counter electrode for dye-sensitized solar cells. Electrochemistry Communications, 2009. 11(7): p. 1346-1349.
[71]Mi, Y. and Y. Weng, Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2. Scientific Reports, 2015. 5(1): p. 11482.
[72]Diebold, U., The surface science of titanium dioxide. Surface Science Reports, 2003. 48(5): p. 53-229.
[73]Hanaor, D.A.H. and C.C. Sorrell, Review of the anatase to rutile phase transformation. Journal of Materials Science, 2011. 46(4): p. 855-874.
[74]Jamieson, J.C., B.J.A.M.J.o.E. Olinger, and P. Materials, Pressure-temperature studies of anatase, brookite rutile, and Ti02 (II): A discussion. 1969. 54(9-10): p. 1477-1481.
[75]Ahmed, A.S.A., et al., Screen-printed carbon black/SiO2 composite counter electrodes for dye-sensitized solar cells. Solar Energy, 2021. 230: p. 902-911.
[76]Ahmadi, S., et al., The Role of Physical Techniques on the Preparation of Photoanodes for Dye Sensitized Solar Cells. International Journal of Photoenergy, 2014. 2014: p. 198734.
[77]Agrawal, A., et al., Performance analysis of TiO2 based dye sensitized solar cell prepared by screen printing and doctor blade deposition techniques. Solar Energy, 2021. 226: p. 9-19.
[78]Rubino, A. and R. Queirós, Electrochemical determination of heavy metal ions applying screen-printed electrodes based sensors. A review on water and environmental samples analysis. Talanta Open, 2023. 7: p. 100203.
[79]劉力榮, 網印法製作二氧化鈦摻雜奈米銀的多種薄膜結構對染料敏化太陽能電池的影響, in 電子工程系碩士班. 2022, 國立虎尾科技大學: 雲林縣. p. 60.[80]Oatley, C.W.J.J.o.A.P., The early history of the scanning electron microscope. 1982. 53(2): p. R1-R13.
[81]Bogner, A., et al., A history of scanning electron microscopy developments: Towards “wet-STEM” imaging. Micron, 2007. 38(4): p. 390-401.
[82]Ruska, E.J.R.o.m.p., The development of the electron microscope and of electron microscopy. 1987. 59(3): p. 627.
[83]Haguenau, F., et al., Key events in the history of electron microscopy. 2003. 9(2): p. 96-138.
[84]Schmitt, R., Scanning Electron Microscope, in CIRP Encyclopedia of Production Engineering, L. Laperrière and G. Reinhart, Editors. 2014, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 1085-1089.
[85]Bogner, A., et al., A history of scanning electron microscopy developments: Towards “wet-STEM” imaging. 2007. 38(4): p. 390-401.
[86]羅聖全. 研發奈米科技的基本工具之一電子顯微鏡介紹 – SEM. Available from: https://www.materialsnet.com.tw/DocDnld.aspx?id=4322.
[87]Ermrich, M., D. Opper, and PANalytical, XRD for the Analyst: Getting Acquainted with the Principles. 2013: PANalytical.
[88]Britannica, E. X-ray diffraction. [cited 2023 2023年7月2日]; Available from: https://www.britannica.com/science/X-ray-diffraction.
[89]G2V. Solar Simulation Technology. Available from: https://g2voptics.com/solar-simulation/.
[90]Carlos, C., F. Rafael, and P. Maria del Henar, Solar Radiation Effect on Crop Production, in Solar Radiation, B.B. Elisha, Editor. 2012, IntechOpen: Rijeka. p. Ch. 11.
[91]Mohamad, A.A., Physical properties of quasi-solid-state polymer electrolytes for dye-sensitised solar cells: A characterisation review. Solar Energy, 2019. 190: p. 434-452.
[92]張家華, 氧化銦錫奈米柱狀結構應用於提升砷化鎵太陽能電池轉換效率, in 光電工程系所. 2009, 國立交通大學: 新竹市. p. 57.
[93]Sarker, S., et al., Electrochemical Impedance Spectra of Dye-Sensitized Solar Cells: Fundamentals and Spreadsheet Calculation. International Journal of Photoenergy, 2014. 2014: p. 851705.
[94]Omar, A. and H. Abdullah, Electron transport analysis in zinc oxide-based dye-sensitized solar cells: A review. Renewable and Sustainable Energy Reviews, 2014. 31: p. 149-157.
[95]Subramanian, A., C.-Y. Ho, and H. Wang, Investigation of various photoanode structures on dye-sensitized solar cell performance using mixed-phase TiO2. Journal of Alloys and Compounds, 2013. 572: p. 11-16.
[96]Sarker, S., H.W. Seo, and D.M. Kim, Calculating current density–voltage curves of dye-sensitized solar cells: A straight-forward approach. Journal of Power Sources, 2014. 248: p. 739-744.
[97]Grätzel, M., Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorganic Chemistry, 2005. 44(20): p. 6841-6851.
[98]Goh, G.K.L., S.K. Donthu, and P.K. Pallathadka, Cracking and Orientation of Solution-Deposited Rutile TiO2 Films. Chemistry of Materials, 2004. 16(15): p. 2857-2861.
[99]Phadke, S., A. Du Pasquier, and D.P. Birnie, III, Enhanced Electron Transport through Template-Derived Pore Channels in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2011. 115(37): p. 18342-18347.
[100]Huang, W.M., et al. Improvement of Dye-sensitized Solar Cells by Using Compact and Pressed Layer of TiO2. in 2022 IEEE 5th International Conference on Knowledge Innovation and Invention (ICKII ). 2022.
[101]Wu, T.-C., et al., Performance Improvement of Dye-Sensitized Solar Cells with Pressed TiO2 Nanoparticles Layer. 2023. 13(5): p. 907.
[102]Li, J., et al., Improved performance of dye-sensitized solar cell based on TiO2 photoanode with FTO glass and film both treated by TiCl4. Physica B: Condensed Matter, 2016. 500: p. 48-52.
[103]Zhao, D., et al., Effect of Annealing Temperature on the Photoelectrochemical Properties of Dye-Sensitized Solar Cells Made with Mesoporous TiO2 Nanoparticles. The Journal of Physical Chemistry C, 2008. 112(22): p. 8486-8494.
[104]Kang, M.-g., et al., Dependence of TiO
2 Film Thickness on Photocurrent-Voltage Characteristics of Dye-Sensitized Solar Cells. Bulletin of the Korean Chemical Society, 2004. 25(5): p. 742-744.