[1]P. Lakshmi Madhuri, S. Bhupathi, S. Shuddhodana, Z. Judeh, S. H. Yang, Y. Long, and I. Abdulhalim, 2021, “Hybrid vanadium dioxide-liquid crystal tunable non-reciprocal scattering metamaterial smart window for visible and infrared radiation control,” Optical Materials Express, 11, 3023-3037.
[2]A. Moheghi, H. Nemati, Y. Li, Q. Li, and D. K. Yang, 2016, “Bistable salt doped cholesteric liquid crystals light shutter,” Optical Materials, 52, 219-223.
[3]Y. Li and D. Luo, 2016, “Fabrication and application of 1D micro-cavity film made by cholesteric liquid crystal and reactive mesogen,” Optical Materials Express, 6, 691-696.
[4]T. Choi, J. Woo, J. Baek, Y. Choi and T. Yoon, 2017, “Fast control of haze value using electrically switchable diffraction in a fringe-field switching liquid crystal device,” IEEE Transactions on Electron Devices, 64, 3213-3218.
[5]Y. S. Jo, T. H. Choi, S. M. Ji, and T. H. Yoon, 2018, "Control of haze value by dynamic scattering in a liquid crystal mixture without ion dopants," AIP Advances, 8, 085004.
[6]Y. Garbovskiy, 2018, “Nanoparticle-enabled ion trapping and ion generation in liquid crystals,” Advances in Condensed Matter Physics, 2018, 8914891.
[7]X. Du, Y. Li, Y. Liu, F. Wang, and D. Luo, 2019, “Electrically switchable bistable dual frequency liquid crystal light shutter with hyper-reflection in near infrared,” Liquid Crystals, 46, 1727-1733.
[8]R. Kumar and K.K. Raina, 2014, “Electrically modulated fluorescence in optically active polymer stabilised cholesteric liquid crystal shutter,” Liquid Crystals, 41, 228-233.
[9]J. W. Chen, C. C. Huang, and C. Y. Chao, 2014, “Supramolecular liquid-crystal gels formed by polyfluorene-based π-conjugated polymer for switchable anisotropic scattering device,” ACS Applied Materials and Interfaces, 2014, 6757-6764.
[10]X. Li, Y. Guo, H. Huai, Y. Yang, Y. Sun, C. Zhang, and Y. Sun, 2020, “An electrically controlled light-scattering device based on liquid crystal/polymer microsphere composites,” Liquid Crystals, 47, 650-657.
[11]Y. Yuan, J. Xie, Y. Ma, D. Luo, F. Fan, and S. Wen, 2022, “Low-voltage-driven liquid crystal scattering-controllable device based on defects from rapidly varying boundary,” Optics Letters, 47, 957-960.
[12]T. H. Choi, J. H. Woo, B. G. Jeon, J. Kim, M. Cha, and T. H. Yoon, 2018, “Fast fringe-field switching of vertically aligned liquid crystals between high-haze translucent and haze-free transparent states,” Liquid Crystals, 45, 1419-1427.
[13]Z. Y. Liang, C. Y. Tu, T. H. Yang, C. K. Liu, and K. T. Cheng, 2018, “Low-threshold-voltage and electrically switchable polarization-selective scattering mode liquid crystal light shutters,” Polymers, 2018, 1354.
[14]F. Mateen, H. Oh, W. Jung, S. Y. Lee, H. Kikuchi, and S. K. Hong, 2018, “Polymer dispersed liquid crystal device with integrated luminescent solar concentrator,” Liquid Crystals, 45, 498-506.
[15]G. D. Filpo, K. Armentano, E. Pantuso, A. I. Mashin, G. Chidichimo, and F. P. Nicoletta, 2019, “Polymer membranes dispersed liquid crystal (PMDLC): a new electro-optical device,” Liquid Crystals, 46, 986-993.
[16]Z. He, K. Yin, and S. T. Wu, 2020, “Passive polymer-dispersed liquid crystal enabled multi-focal plane displays,” Optical Express, 28, 15294-15299.
[17]Y. H. Lin, H. S. Chen, T. H. Chiang, C. H. Wu, and H. K. Hsu, 2011, “A reflective polarizer-free electro-optical switch using dye-doped polymer-stabilized blue phase liquid crystals,” Optical Express, 19, 2556-2561.
[18]S. Liu, Y. Li, P. Zhou, Q. Chen, and Y. Su, 2018, “Reverse-mode PSLC multi-plane optical see-through display for AR applications,” Optical Express, 26, 3394-3403.
[19]X. Li, Y. Guo, H. Huai, Y. Yang, Y. Sun, C. Zhang, Y. Sun, 2020, “The effect of monomer and chiral dopant content on reverse-mode polymer stabilized cholesteric liquid crystal display,” Journal of Molecular Liquids, 309, 113112.
[20]K. W. Lin, C. C. Wang, H. Y. Tseng, L. M. Chang, C. C. Li, and C. T. Wang, 2022, “Polarization-selective ultra-broadband reflective diffuser as a smart projection screen,” Advanced Photonics Research, 2022, 2200016.
[21]Y. X. Chen and J. S. Hsu, 2020, “Ultra-low switching reverse mode liquid crystal gels,” Optical Express, 28, 26783-26791.
[22]Y. Zhou, Y. You, X. Liao, W. Liu, L. Zhou, B. Zhang, W. Zhao, X. Hu, L. Zhang, H. Yang, G. Zhou, and D. Yuan, 2020, “Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices,” Macromolecular Chemistry and Physics, 221, 2000185.
[23]X. Hu, X. Zhang, W. Yang, X.F. Jiang, X. Jiang, T. Haan, D. Yuan, W. Zhao, N. Zheng, M. Jin, L. Shui, A. Schenning, G. Zhou, 2019, “Stable and scalable smart window based on polymer stabilized liquid crystals,” Journal Applied Polymer Science, 137, 48917.
[24]Y. Yuan, F. Fan, C. Zhao, H. S. Kwok, and M. Schadt, 2020, “Low-driving-voltage, polarizer-free, scattering-controllable liquid crystal device based on randomly patterned photo-alignment,” Optics Letters, 45, 3697-3700.
[25]Y. H. Shin, N. S. Oh, and S. B. Kwon, 2017, “Electro-optical properties of vertically aligned polymer network liquid crystals for normally transparent light shutters,” Molecular Crystals and Liquid Crystals, 644, 130-136.
[26]P. J. Collings and M. Hird, 1997, “Introduction to liquid crystals chemistry and physics: Chemistry and Physics,” Taylor and Francis, London.
[27]P. G. de Gennes and J. Prost, 1993, “The physics of liquid crystal,” Oxford Science Publications, Oxford.
[28]L. M. Blinov and V. G. Chigrinov, 1994, “Electro-optic effect in liquid crystal materials,” Springer, New York.
[29]郭建宏,2005,“摻雜染料光配向基板上之複合型配向液晶相位光柵之製作及其光電特性研究”,國立成功大學物理研究所碩士論文。[30]黃三宜,2006,“聚合物表面引致快速吸附達成液晶光柵光開關”,國立成功大學物理研究所碩士論文。[31]P. Yeh and C. Gu, 1999, “Optics of liquid crystal display,” John Wiley & Sons.
[32]李美儒,2004,“摻雜偶氮染料之向列型液晶薄膜在雙光子光柵下引致的光折變效應”,國立成功大學物理研究所碩士論文。[33]I. C. Khoo, 1995, “Liquid crystal-physical properties and nonlinear optical phenomena,” John Wiley & Sons, New York.
[34]N. Mizoshita, K. Hanabusa, and T. Kato, 2003, “Fast and high-contrast electro-optical switching of liquid-crystalline physical gels: formation of oriented microphase-separated structures,” Advanced Functional Materials, 13, 313.
[35]N. Mizoshita, Y. Suzuki, K. Hanabusa, and T. Kato, 2005, “Bistable nematic liquid crystals with self-assembled fibers,” Advanced Functional Materials, 17, 692.
[36]F. J. Kahn, G. N. Taylor and H. Schonhorn, 1973, “Surface-produced alignment of liquid crystals,” Proceedings of the IEEE, 61, 823-828.
[37]K. Kočevar, and I. Muševič, 2003, “Structural forces near phase transitions of liquid crystals,” ChemPhysChem, 4, 1049-1056.
[38]李冠卿,1998,“近代光學”,聯經出版事業公司。