|
[1]Mandal, N., Doloi, B., & Mondal, B. (2013). Predictive modeling of surface roughness in high speed machining of AISI 4340 steel using yttria stabilized zirconia toughened alumina turning insert. International Journal of Refractory Metals and Hard Materials, 38, 40-46. https://doi.org/10.1016/j.ijrmhm.2012.12.007 [2]Zou, B., Zhou, H., Huang, C., Xu, K., & Wang, J. (2015). Tool damage and machined-surface quality using hot-pressed sintering Ti (C 7 N 3)/WC/TaC cermet cutting inserts for high-speed turning stainless steels. The International Journal of Advanced Manufacturing Technology, 79, 197-210. https://doi.org/10.1007/s00170-015-6823-x [3]Singh, B. K., Mondal, B., & Mandal, N. (2016). Machinability evaluation and desirability function optimization of turning parameters for Cr2O3 doped zirconia toughened alumina (Cr-ZTA) cutting insert in high speed machining of steel. Ceramics International, 42(2), 3338-3350. https://doi.org/10.1016/j.ceramint.2015.10.128 [4]Mia, M., Singh, G., Gupta, M. K., & Sharma, V. S. (2018). Influence of Ranque-Hilsch vortex tube and nitrogen gas assisted MQL in precision turning of Al 6061-T6. Precision Engineering, 53, 289-299. https://doi.org/10.1016/j.precisioneng.2018.04.011 [5]Warsi, S. S., Agha, M. H., Ahmad, R., Jaffery, S. H. I., & Khan, M. (2019). Sustainable turning using multi-objective optimization: a study of Al 6061 T6 at high cutting speeds. The International Journal of Advanced Manufacturing Technology, 100, 843-855. https://doi.org/10.1007/s00170-018-2759-2 [6]Singh, B. K., Roy, H., Mondal, B., Roy, S. S., & Mandal, N. (2019). Measurement of chip morphology and multi criteria optimization of turning parameters for machining of AISI 4340 steel using Y-ZTA cutting insert. Measurement, 142, 181-194. https://doi.org/10.1016/j.measurement.2019.04.064 [7]Abbas, A. T., Sharma, N., Anwar, S., Luqman, M., Tomaz, I., & Hegab, H. (2020). Multi-response optimization in high-speed machining of Ti-6Al-4V using TOPSIS-fuzzy integrated approach. Materials, 13(5), 1104. https://doi.org/10.3390/ma13051104 [8]Marani, M., Zeinali, M., Songmene, V., & Mechefske, C. K. (2021). Tool wear prediction in high-speed turning of a steel alloy using long short-term memory modelling. Measurement, 177, 109329. https://doi.org/10.1016/j.measurement.2021.109329 [9]Upadhyay, V., Jain, P. K., & Mehta, N. K. (2013). In-process prediction of surface roughness in turning of Ti–6Al–4V alloy using cutting parameters and vibration signals.Measurement,46(1),154-160. https://doi.org/10.1016/j.measurement.2012.06.002 [10]Elangovan, M., Sakthivel, N. R., Saravanamurugan, S., Nair, B. B., & Sugumaran, V. (2015). Machine learning approach to the prediction of surface roughness using statistical features of vibration signal acquired in turning. Procedia Computer Science, 50, 282-288.https://doi.org/10.1016/j.procs.2015.04.047 [11]Rao, C. P., & Bhagyashekar, M. S. (2014). Effect of machining parameters on the surface roughness while turning particulate composites. Procedia Engineering, 97, 421-431. https://doi.org/10.1016/j.proeng.2014.12.266 [12]Asiltürk, I., Neşeli, S., & Ince, M. A. (2016). Optimisation of parameters affecting surface roughness of Co28Cr6Mo medical material during CNC lathe machining by using the Taguchi and RSM methods. Measurement, 78, 120–128. https://doi.org/10.1016/j.measurement.2015.09.052 [13]Abbas, A. T., Pimenov, D. Y., Erdakov, I. N., Mikolajczyk, T., El Danaf, E. A., & Taha, M. A. (2017). Minimization of turning time for high-strength steel with a given surface roughness using the Edgeworth–Pareto optimization method. The International Journal of Advanced Manufacturing Technology, 93, 2375-2392. https://doi.org/10.1007/s00170-017-0678-2 [14]Abbas, A. T., Pimenov, D. Y., Erdakov, I. N., Taha, M. A., Soliman, M. S., & El Rayes, M. M. (2018). ANN surface roughness optimization of AZ61 magnesium alloy finish turning: Minimum machining times at prime machining costs. Materials, 11(5), 808. https://doi.org/10.3390/ma11050808 [15]Sahithi, V. V. D., Malayadrib, T., & Srilatha, N. (2019). Optimization of turning parameters on surface roughness based on Taguchi technique. Materials Today: Proceedings, 18, 3657-3666. https://doi.org/10.1016/j.matpr.2019.07.299 [16]Thirumalai, R., Techato, K., Chandrasekaran, M., Venkatapathy, K., & Seenivasan, M. (2021). Experimental investigation during turning process of titanium material for surface roughness. Materials Today: Proceedings, 45, 1423-1426. https://doi.org/10.1016/j.matpr.2020.07.213 [17]Elbah, M., Yallese, M. A., Aouici, H., Mabrouki, T., & Rigal, J. F. (2013). Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel. Measurement, 46(9), 3041-3056. https://doi.org/10.1016/j.measurement.2013.06.018 [18]Kumar, R., & Chauhan, S. (2015). Study on surface roughness measurement for turning of Al 7075/10/SiCp and Al 7075 hybrid composites by using response surface methodology (RSM) and artificial neural networking (ANN). Measurement, 65, 166-180. https://doi.org/10.1016/j.measurement.2015.01.003 [19]Masmiati, N., Sarhan, A. A., Hassan, M. A. N., & Hamdi, M. (2016). Optimization of cutting conditions for minimum residual stress, cutting force and surface roughness in end milling of S50C medium carbon steel. Measurement, 86, 253-265. https://doi.org/10.1016/j.measurement.2016.02.049 [20]Lmalghan, R., Rao MC, K., Rao, S. S., & Herbert, M. A. (2018). Machining parameters optimization of AA6061 using response surface methodology and particle swarm optimization. International Journal of Precision Engineering and Manufacturing, 19, 695-704. https://doi.org/10.1007/s12541-018-0083-2 [21]Mojaver, P., Khalilarya, S., & Chitsaz, A. (2019). Multi-objective optimization using response surface methodology and exergy analysis of a novel integrated biomass gasification, solid oxide fuel cell and high-temperature sodium heat pipe system. Applied Thermal Engineering, 156, 627-639. https://doi.org/10.1016/j.applthermaleng.2019.04.104 [22]Kumar, S. S., Erdemir, F. A. T. İ. H., Varol, T., Kumaran, S. T., Uthayakumar, M., & Canakci, A. (2020). Investigation of WEDM process parameters of Al–SiC–B4C composites using response surface methodology. International Journal of Lightweight Materials and Manufacture, 3(2), 127-135. https://doi.org/10.1016/j.ijlmm.2019.09.003 [23]Surya, M. S., Prasanthi, G., Kumar, A. K., Sridhar, V. K., & Gugulothu, S. K. (2021). Optimization of cutting parameters while turning Ti-6Al-4 V using response surface methodology and machine learning technique. International Journal on Interactive Design and Manufacturing (IJIDeM), 15, 453-462. https://doi.org/10.1007/s12008-021-00774-0 [24]Hasanzadeh, R., Mojaver, M., Azdast, T., & Park, C. B. (2022). A novel systematic multi-objective optimization to achieve high-efficiency and low-emission waste polymeric foam gasification using response surface methodology and TOPSIS method. Chemical Engineering Journal, 430, 132958. https://doi.org/10.1016/j.cej.2021.132958 [25]SUS304不鏽鋼機械材質,取自:唐榮鋼種化學成分及機械性質規範表 網頁: https://www.tangeng.com.tw/,線上檢索日期:2023年6月6日 [26]Sandvik Coromant刀具,取自: 台灣山特維克股份有限公司網頁: https://www.sandvik.coromant.com/en-gb,線上檢索日期:2023年6月6日 [27]程泰機械 TS-100 CNC車床,取自:程泰機械股份有限公司網頁: https://www.goodwaycnc.com/exhtml_goodway/index.html,線上檢索日期:2023年6月6日 [28]623C01加速度規,取自: PCB Piezotronics網頁: https://www.pcb.com/#,線上檢索日期:2023年6月6日 [29]USB-4431擷取卡,取自:國家儀器股份有限公司網頁: https://www.ni.com/zh-tw.html,線上檢索日期:2023年6月6日 [30]VK-X110形狀量測雷射顯微鏡,取自:台灣基恩斯股份有限公司網頁: https://www.keyence.com.tw/,線上檢索日期:2023年6月6日 [31]SJ-310表面粗度測定儀,取自:台灣三豐儀器股份有限公司網頁: https://www.mitutoyo.com.tw/,線上檢索日期:2023年6月6日 [32]Prasad, B. S., & Babu, M. P. (2017). Correlation between vibration amplitude and tool wear in turning: Numerical and experimental analysis. Engineering Science and Technology, an International Journal, 20(1), 197-211. https://doi.org/10.1016/j.jestch.2016.06.011 [33]壽正琪(2006),「成本受限下混合實驗之最佳化演算法」,國立交通大學工業工程管理學系,碩士論文。 [34]Chen, B., Chen, X., Li, B., He, Z., Cao, H., & Cai, G. (2011). Reliability estimation for cutting tools based on logistic regression model using vibration signals. Mechanical Systems and Signal Processing, 25(7), 2526-2537. https://doi.org/10.1016/j.ymssp.2011.03.001 [35]Özbek, O., & Saruhan, H. (2020). The effect of vibration and cutting zone temperature on surface roughness and tool wear in eco-friendly MQL turning of AISI D2. Journal of Materials Research and Technology, 9(3), 2762-2772. https://doi.org/10.1016/j.jmrt.2020.01.010 [36]Hessainia, Z., Belbah, A., Yallese, M. A., Mabrouki, T., & Rigal, J. F. (2013). On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations. Measurement, 46(5), 1671-1681. https://doi.org/10.1016/j.measurement.2012.12.016 [37]Selvaraj, D. P., Chandramohan, P., & Mohanraj, M. (2014). Optimization of surface roughness, cutting force and tool wear of nitrogen alloyed duplex stainless steel in a dry turning process using Taguchi method. Measurement, 49, 205-215. https://doi.org/10.1016/j.measurement.2013.11.037
|