|
[1] Turing, A.M. (1980). Computing Machinery and Intelligence. Creative Computing, 6, 44-53. [2] Russell, S.J., & Norvig, P. (1995). Artificial Intelligence: A Modern Approach. [3] Vishnubhatla, A. (2021). Classification of Fresh Vegetables Through Deep Learning and Neural Networks. Cognitive Informatics and Soft Computing. [4] Munaka, T., Samie, F., Bauer, L., & Henkel, J. (2020). Improved Feature Extraction Method for Sound Recognition Applied to Automatic Sorting of Recycling Wastes. J. Inf. Process., 28, 658-665. [5] Davis, S., & Mermelstein, P. (1980). Comparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken Se. [6] Chaithra, & Doddamani, M.B. (2020). Automated Waste Segregator and Visualization for Separation of Wastes using Neural Networks. [7] Zhang, M., Yan, L., Luo, G., Li, G., Liu, W., & Zhang, L. (2021). A Novel Insect Sound Recognition Algorithm Based on MFCC and CNN. 2021 6th International Conference on Communication, Image and Signal Processing (CCISP), 289-294. [8] Santiago, R.M., Rabano, S.L., Billones, R.K., Calilung, E.J., Sybingco, E., & Dadios, E.P. (2017). Insect detection and monitoring in stored grains using MFCCs and artificial neural network. TENCON 2017 - 2017 IEEE Region 10 Conference, 2542-2547. [9] Shin, H. C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., & Summers, R. M. (2016). Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE transactions on medical imaging, 35(5), 1285–1298. [10] Winursito,A., Hidayat, R., & Bejo, A. (2018). Improvement of MFCC feature extraction accuracy using PCA in Indonesian speech recognition. 2018 International Conference on Information and Communications Technology (ICOIACT), 379-383. [11] Roweis, S.T., & Saul, L.K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290 5500, 2323-6 . [12] Rachmad, A., Anamisa, D.R., & Bintari, N.P. (2017). Voice Recognition Application by Using Fisher’s Linear Discriminant Analysis (FLDA) Feature Extraction. Advanced Science Letters, 23, 12344-12348. [13] Potratz, G.L., Canchumuni, S.W., Castro, J.D., Potratz, J., & Pacheco, M.A. (2021). Automatic Lithofacies Classification with t-SNE and K-Nearest Neighbors Algorithm. [14] Yang, J., Zhang, D., Frangi, A.F., & Yang, J. (2004). Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 131-137. [15] Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Networks. 2015, 61: 85–117. [16] Schmidt-Hieber, J. (2020). Nonparametric regression using deep neural networks with ReLU activation function. Annals of Statistics, 48, 1875-1897. [17] Wang, Y., Li, Y., Song, Y., & Rong, X. (2020). The Influence of the Activation Function in a Convolution Neural Network Model of Facial Expression Recognition. Applied Sciences. [18] Cortes, C., & Vapnik, V.N. (2004). Support-Vector Networks. Machine Learning, 20, 273-297. [19] Wang, Y., Li, Y., Song, Y., & Rong, X. (2020). The Influence of the Activation Function in a Convolution Neural Network Model of Facial Expression Recognition. Applied Sciences. [20] Hochreiter, S., & Bengio, Y. (2001). Gradient Flow in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies. [21] Schuller, B., Steidl, S., Batliner, A., Vinciarelli, A., Scherer, K.R., Ringeval, F., Chetouani, M., Weninger, F., Eyben, F., Marchi, E., Mortillaro, M., Salamin, H., Polychroniou, A., Valente, F., & Kim, S. (2013). The INTERSPEECH 2013 computational paralinguistics challenge: social signals, conflict, emotion, autism. INTERSPEECH. [22] LeCun, Y., & Cortes, C. (2005). The mnist database of handwritten digits. [23] Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. EMNLP. [24] Wu, L., & Perin, G. (2021). On the Importance of Pooling Layer Tuning for Profiling Side-channel Analysis. IACR Cryptol. ePrint Arch.. [25] Ruder, S. (2016). An overview of gradient descent optimization algorithms. ArXiv, abs/1609.04747. [26] Ruder, S. (2016). An overview of gradient descent optimization algorithms. ArXiv, abs/1609.04747. [27] Kingma, D.P., & Ba, J. (2015). Adam: A Method for Stochastic Optimization. CoRR, abs/1412.6980. [28] Gupta, S., Jaafar, J., Fatimah, W., & Bansal, A. (2013). FEATURE EXTRACTION USING MFCC. Signal & Image Processing : An International Journal, 4, 101-108. [29] Ming, J.T., Noor, N.M., Rijal, O.M., Kassim, R.M., & Yunus, A. (2018). Lung Disease Classification Using Different Deep Learning Architectures and Principal Component Analysis. 2018 2nd International Conference on BioSignal Analysis, Processing and Systems (ICBAPS), 187-190. [30] Pérezgonzález, Antonio, Vergara, M. , Sanchobru, J. L. , Van, D. M. L. J. P. , Hinton, G. E. , & Shanmugapriya, D. , et al. (2015). Visualizing Data using t-SNE. [31] Rácz, A., Bajusz, D., & Héberger, K. (2021). Effect of Dataset Size and Train/Test Split Ratios in QSAR/QSPR Multiclass Classification. Molecules, 26.
|