[1]Jovanović, M. T., S. Tadić, S. Zec, Z. Mišković, and I. Bobić, 2006, "The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti–6Al–4V alloy", Materials & Design. 27(3): p. 192-199
[2]Sivarupan, Tharmalingam, Michael Bermingham, Chi-Ho Ng, Shoujin Sun, and Matthew Dargusch, 2024, "A review of the use of cryogenic coolant during machining titanium alloys", Sustainable Materials and Technologies. 40: p. e00946
[3]Li, Guangxian, Sanjeet Chandra, Rizwan Abdul Rahman Rashid, Suresh Palanisamy, and Songlin Ding, 2022, "Machinability of additively manufactured titanium alloys: A comprehensive review", Journal of Manufacturing Processes. 75: p. 72-99
[4]Satyanarayana, Ch Pavan, L. Suvarna Raju, Ravikumar Dumpala, and B. Ratna Sunil, 2024, "A review on strategies to enhance the performance of the titanium based medical implants", Materials Today Communications. 38: p. 107985
[5]Bammidi, Roopsandeep, Dowluru Sreeramulu, Hymavathi Madivada, Pavan Kumar Rejeti, and Muddada Venkatesh, 2023, "Towards an understanding of Ti-6Al-4V machining and machinability", Materials Today: Proceedings,
[6]Hong, Shane Y. and Yucheng Ding, 2001, "Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V", International Journal of Machine Tools and Manufacture. 41(10): p. 1417-1437
[7]Ziberov, Maksym, Déborah de Oliveira, Marcio Bacci da Silva, and Wayne N. P. Hung, 2020, "Wear of TiAlN and DLC coated microtools in micromilling of Ti-6Al-4V alloy", Journal of Manufacturing Processes. 56: p. 337-349
[8]Lin, Yan Cherng, Biing Hwa Yan, and Yong Song Chang, 2000, "Machining characteristics of titanium alloy (Ti–6Al–4V) using a combination process of EDM with USM", Journal of Materials Processing Technology. 104(3): p. 171-177
[9]Gugulothu, Bhiksha, G. Krishna Mohana Rao, D. Hanuantha Rao, Desta Kalbessa Kumsa, and Minyahil Bezabih Kassa, 2021, "Experimental results on EDM of Ti-6Al-4V in drinking water with Graphite powder concentration", Materials Today: Proceedings. 46: p. 234-242
[10]Chen, Xuezhen, Zhengyang Xu, Dong Zhu, Zhongdong Fang, and Di Zhu, 2016, "Experimental research on electrochemical machining of titanium alloy Ti60 for a blisk", Chinese Journal of Aeronautics. 29(1): p. 274-282
[11]Koji, Sanja, Slobodan Birgermajer, Vasa Radoni, Ivana Podunavac, Jovana Jevremov, Bojan Petrovi, Evgenija Markovi, and Goran M. Stojanovi, 2020, "Optimization of hybrid microfluidic chip fabrication methods for biomedical application", Microfluidics and Nanofluidics. 24(9)
[12]Abd-Elaziem, Walaa, Moustafa A. Darwish, Atef Hamada, and Walid M. Daoush, 2024, "Titanium-Based alloys and composites for orthopedic implants Applications: A comprehensive review", Materials and Design. 241
[13]Rajurkar, K. P.,year, "Research and Technological Developments in Nontraditional Machining". in Research and Technological Developments in Nontraditional Machining, November 27, 1988 - December 2, 1988. 1988: p. ASME, Production Engineering Div, New York, NY, USA. Chicago, IL, USA: Publ by American Soc of Mechanical Engineers (ASME)
[14]Oke, Samuel Ranti, Gabriel Seun Ogunwande, Moshood Onifade, Emmanuel Aikulola, Esther Dolapo Adewale, Olumide Emmanuel Olawale, Babapelumi Ebun Ayodele, Fredrick Mwema, Japheth Obiko, and Michael Oluwatosin Bodunrin, 2020, "An overview of conventional and non-conventional techniques for machining of titanium alloys", Manufacturing Rev. 7
[15]Schubert, Andreas, Matthias Hackert, and Gunnar Meichsner,year, "Simulating the influence of the nozzle diameter on the shape of micro geometries generated with jet electrochemical machining". in Proc. of the European COMSOL Conference. 2009.
[16]Liu, Zhuang, Changshui Gao, Chao Guo, and Yi Qiu, 2020, "Simulation and experiments of abrasive assisted electrochemical jet machining of SiC reinforced aluminum matrix composites", Procedia CIRP. 95: p. 760-765
[17]Wang, Xindi, Ningsong Qu, and Xiaolong Fang, 2019, "Reducing stray corrosion in jet electrochemical milling by adjusting the jet shape", Journal of Materials Processing Technology. 264: p. 240-248
[18]Luo, Jinxing, Xiaolong Fang, and Di Zhu, 2020, "Jet electrochemical machining of multi-grooves by using tube electrodes in a row", Journal of Materials Processing Technology. 283: p. 116705
[19]Speidel, Alistair, Jonathon Mitchell-Smith, Ivan Bisterov, and Adam T. Clare, 2019, "Oscillatory behaviour in the electrochemical jet processing of titanium", Journal of Materials Processing Technology. 273
[20]陳品嘉,2020,"以電鍍沉積法包覆絕緣層對電化學微槽加工電極耐受度及其加工特性之研究", in 機械與電腦輔助工程學系逢甲大學: 台中市. p. 100.
[21]楊雅筑,2020,"電鍍沉積金屬遮護層於電化學鑽孔加工特性之研究", in 機械與電腦輔助工程學系逢甲大學: 台中市. p. 72.
[22]Ezugwu, E. O. and Z. M. Wang, 1997, "Titanium alloys and their machinability—a review", Journal of Materials Processing Technology. 68(3): p. 262-274
[23]Corduan, N., T. Himbart, G. Poulachon, M. Dessoly, M. Lambertin, J. Vigneau, and B. Payoux, 2003, "Wear Mechanisms of New Tool Materials for Ti-6AI-4V High Performance Machining", CIRP Annals. 52(1): p. 73-76
[24]邱衍智,2004,"Ti-6Al-4V鈦合金之可加工性探討", in 機械與自動化工程所國立高雄第一科技大學: 高雄市. p. 77.
[25]Cantero, J. L., M. M. Tardío, J. A. Canteli, M. Marcos, and M. H. Miguélez, 2005, "Dry drilling of alloy Ti–6Al–4V", International Journal of Machine Tools and Manufacture. 45(11): p. 1246-1255
[26]Hasçalık, Ahmet and Ulaş Çaydaş, 2007, "A comparative study of surface integrity of Ti–6Al–4V alloy machined by EDM and AECG", Journal of Materials Processing Technology. 190(1): p. 173-180
[27]Kumar, Ramanuj, Soumikh Roy, Parimal Gunjan, Abhipsa Sahoo, Divya Deb Sarkar, and Rabin Kumar Das, 2018, "Analysis of MRR and Surface Roughness in Machining Ti-6Al-4V ELI Titanium Alloy Using EDM Process", Procedia Manufacturing. 20: p. 358-364
[28]袁聖皓,2020,"運用田口法探討放電加工Ti-6Al-4V鈦合金之特性", 國立屏東科技大學: 屏東縣. p. 1-85.
[29]Singh, Rupinder, J. S. Dureja, Manu Dogra, Munish Kumar Gupta, Mozammel Mia, and Qinghua Song, 2020, "Wear behavior of textured tools under graphene-assisted minimum quantity lubrication system in machining Ti-6Al-4V alloy", Tribology International. 145: p. 106183
[30]Zhao, Jian and Zhanqiang Liu, 2020, "Plastic flow behavior for machined surface material Ti-6Al-4V with rotary ultrasonic burnishing", Journal of Materials Research and Technology. 9(2): p. 2387-2401
[31]Gupta, Munish Kumar, Muhammad Jamil, Ghulam Hussain, Mohammed Alkahtani, Mustufa Haider Abidi, and Grzegorz M. Krolczyk, 2023, "Characterization of thermophysical properties of dry ice-based ethanol/ester oil and its influence on surface hardening of machined Ti-6Al-4V alloy", Journal of Molecular Liquids. 388: p. 122786
[32]Yang, Yong, Yufeng Wang, Chenyu Sun, Qiang Wu, Jie Yan, Yunfeng Liu, Jianhua Yao, and Wenwu Zhang, 2024, "Processing of titanium alloys with improved efficiency and accuracy by laser and electrochemical machining", The International Journal of Advanced Manufacturing Technology. 130(7): p. 4013-4025
[33]Blasl, Jacqueline, Klaus Lichtinger, Fabian Vieltorf, Michael F. Zaeh, and Nico Hanenkamp, 2024, "Experimental investigation of ultrasonic vibration-assisted cryogenic minimum quantity lubrication for milling of Ti-6Al-4V and grinding of Zerodur", Production Engineering. 18(1): p. 75-86
[34]Alsaadawy, Muhammad, Montasser Dewidar, A. Said, Ibrahem Maher, and Taher A. Shehabeldeen, 2024, "Investigation of the Effect of Laser Cutting Parameters on Surface and Kerf Quality of Thick Ti–6Al–4V Alloy Sheets", Arabian Journal for Science and Engineering,
[35]ÖZtÜRk, Erkan and Kadir Kaya, 2024, "Drilling performance of micro-textured twist drill bit for TI-6AL-4V alloy: Validated FEM and statistical approaches", Journal of Manufacturing Processes. 115: p. 342-351
[36]Mathan Kumar, P., K. Sivakumar, and L. Selvarajan, 2024, "EDM machining effectiveness for Ti–6Al–4V alloy using Cu–TiB2 ceramic composite electrode: a parametric evaluation", Ceramics International. 50(11, Part B): p. 20118-20132
[37]Natsu, Wataru, Tomone Ikeda, and Masanori Kunieda, 2007, "Generating complicated surface with electrolyte jet machining", Precision Engineering. 31(1): p. 33-39
[38]Hackert, Matthias, Gunnar Meichsner, Mike Zinecker, and Andreas Schubert,2010,"Micro Turning with Closed Electrolytic Free Jet", in 6th International Symposium on Electrochemical Machining Technology: Vrije Universiteit Brussel, Faculty of Engineering.
[39]Hackert-Oschätzchen, Matthias, Gunnar Meichsner, Mike Zinecker, André Martin, and Andreas Schubert, 2012, "Micro machining with continuous electrolytic free jet", Precision Engineering. 36(4): p. 612-619
[40]Kai, Shoya, Haruo Sai, Masanori Kunieda, and Heikan Izumi, 2012, "Study on Electrolyte Jet Cutting", Procedia CIRP. 1: p. 627-632
[41]Hackert-Oschätzchen, Matthias, André Martin, Gunnar Meichsner, Mike Zinecker, and Andreas Schubert, 2013, "Microstructuring of carbide metals applying Jet Electrochemical Machining", Precision Engineering. 37(3): p. 621-634
[42]Kawanaka, Takuma and Masanori Kunieda, 2015, "Mirror-like finishing by electrolyte jet machining", CIRP Annals. 64(1): p. 237-240
[43]Mitchell-Smith, J. and A. T. Clare, 2016, "ElectroChemical Jet Machining of Titanium: Overcoming Passivation Layers with Ultrasonic Assistance", Procedia CIRP. 42: p. 379-383
[44]Liu, Weidong, Sansan Ao, Yang Li, Zuming Liu, Zhengming Wang, Zhen Luo, Zhiping Wang, and Renfeng Song, 2017, "Jet electrochemical machining of TB6 titanium alloy", The International Journal of Advanced Manufacturing Technology. 90(5): p. 2397-2409
[45]Clare, Adam T., Alistair Speidel, Ivan Bisterov, Alexander Jackson-Crisp, and Jonathon Mitchell-Smith, 2018, "Precision enhanced electrochemical jet processing", CIRP Annals. 67(1): p. 205-208
[46]Mitchell-Smith, Jonathon, Alistair Speidel, Ivan Bisterov, and Adam T. Clare, 2018, "Electrolyte Multiplexing in Electrochemical Jet Processing", Procedia CIRP. 68: p. 483-487
[47]Mitchell-Smith, J., A. Speidel, and A. T. Clare, 2018, "Advancing electrochemical jet methods through manipulation of the angle of address", Journal of Materials Processing Technology. 255: p. 364-372
[48]Wang, Yuanyuan and Ningsong Qu, 2019, "Effect of Breakdown Behavior of Passive Films on the Electrochemical Jet Milling of Titanium Alloy TC4 in Sodium Nitrate Solution", International Journal of Electrochemical Science. 14(2): p. 1116-1131
[49]Jing, Qi, Piaoting Li, Yongbin Zhang, Jian Li, and Fang Ji, 2020, "Micro Machining by Wire-Preposed Jet Electrochemical Machining", Procedia CIRP. 95: p. 809-814
[50]Speidel, Alistair, Ivan Bisterov, Krishna Kumar Saxena, Mohamed Zubayr, Dominiek Reynaerts, Wataru Natsu, and Adam T. Clare, 2022, "Electrochemical jet manufacturing technology: From fundamentals to application", International Journal of Machine Tools and Manufacture. 180: p. 103931
[51]Zhan, Shunda, Zhaozhi Lyu, Bangyan Dong, Weidong Liu, and Yonghua Zhao, 2023, "Cathodic discharge plasma in electrochemical jet machining: Phenomena, mechanism and characteristics", International Journal of Machine Tools and Manufacture. 187
[52]Kong, Huanghai and Ningsong Qu, 2023, "Jet electrochemical milling of Ti-6Al-4 V alloy with ultra-high current density", The International Journal of Advanced Manufacturing Technology. 129(9): p. 4091-4100
[53]Liu, Yang, Xiaolong Fang, Ningsong Qu, Zhaoyang Zhang, and Jinzhong Lu, 2023, "Simultaneous gas electrical discharge and electrochemical jet micromachining of titanium alloy in high-conductivity salt solution", Journal of Materials Processing Technology. 317
[54]Liu, Weidong, Wentao Li, Zhiyong Guo, Yonghua Zhao, and Zhiping Wang, 2024, "A novel approach for predicting the complex geometry generated by electrochemical jet machining", The International Journal of Advanced Manufacturing Technology. 130(11): p. 5369-5378
[55]Schlautmann, Stefan, Henk Wensink, Richard Schasfoort, M. Elwenspoek, and Albert Van den Berg, 2001, "Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips with integrated conductivity sensors", Journal of Micromechanics and Microengineering. 11: p. 386
[56]Wakuda, Manabu, Yukihiko Yamauchi, and Shuzo Kanzaki, 2003, "Material response to particle impact during abrasive jet machining of alumina ceramics", Journal of Materials Processing Technology. 132(1): p. 177-183
[57]蔡逢哲,2008,"磨料噴射精微加工之研究", in 機械工程研究所國立中央大學: 桃園縣. p. 139.
[58]Haj Mohammad Jafar, R., J. K. Spelt, and M. Papini, 2013, "Surface roughness and erosion rate of abrasive jet micro-machined channels: Experiments and analytical model", Wear. 303(1): p. 138-145
[59]Vasanth, S., T. Muthuramalingam, P. Vinothkumar, T. Geethapriyan, and G. Murali, 2016, "Performance Analysis of Process Parameters on Machining Titanium (Ti-6Al-4V) Alloy Using Abrasive Water Jet Machining Process", Procedia CIRP. 46: p. 139-142
[60]Gnanavelbabu, A., P. Saravanan, K. Rajkumar, and S. Karthikeyan, 2018, "Experimental Investigations on Multiple Responses in Abrasive Waterjet Machining of Ti-6Al-4V Alloy", Materials Today: Proceedings. 5(5, Part 2): p. 13413-13421
[61]Kodama, Hiroyuki, Shota Nakamae, Masashi Harada, Daichi Wada, and Kazuhito Ohashi, 2021, "Abrasive jet machining for the microprofile control patterning of herringbone grooves", Precision Engineering. 72: p. 527-542
[62]Shi, Wentian, Jihang Li, Meixia Yuan, Quanlai Li, Yude Liu, and Yuxiang Lin, 2022, "Experimental study on the influence mechanism of micro-abrasive air jet machining on the surface quality of Ti-6Al-4V titanium alloy formed by selective laser melting", Materials Today Communications. 33: p. 104429
[63]Thapa, Nischal, Guransh Singh, Sidharth Ram, Ashish, Aman Kumar, and Basanta Kumar Bhuyan, 2023, "Parametric study of abrasive jet machining on zirconia", Materials Today: Proceedings. 80: p. 1364-1369
[64]Zhao, Jun, Jiangyu Ge, Andrei Khudoley, and Hongyu Chen, 2024, "Numerical and experimental investigation on the material removal profile during polishing of inner surfaces using an abrasive rotating jet", Tribology International. 191: p. 109125
[65]Liu, Z., H. Nouraei, M. Papini, and J. K. Spelt, 2014, "Abrasive enhanced electrochemical slurry jet micro-machining: Comparative experiments and synergistic effects", Journal of Materials Processing Technology. 214(9): p. 1886-1894
[66]Liu, Zhuang, Hooman Nouraei, Jan K. Spelt, and Marcello Papini, 2015, "Electrochemical slurry jet micro-machining of tungsten carbide with a sodium chloride solution", Precision Engineering. 40: p. 189-198
[67]Liu, Zhuang, Changshui Gao, Kai Zhao, and Chao Guo, 2018, "An Empirical Model for Controlling Characteristics of Micro Channel Machined Using Abrasive Assisted Electrochemical Jet Machining", Procedia CIRP. 68: p. 719-724
[68]Liu, Zhuang, Changshui Gao, Kai Zhao, and Ke Wang, 2018, "Machining of microchannel at SS316 surface using abrasive-assisted electrochemical jet machining", The International Journal of Advanced Manufacturing Technology. 95(1): p. 1143-1152
[69]Tsai, Feng Che, Yann Long Lee, and Ju Chun Yeh, 2018, "The technical development of titanium alloy surface process using electrochemical abrasive jet machining", Industrial Lubrication and Tribology. 70(8): p. 1545-1551
[70]Gao, Changshui, Zhuang Liu, Yi Qiu, and Kai Zhao, 2020, "Modelling of Geometric Features of Micro-Channel Made using Abrasive Assisted Electrochemical Jet Machining", International Journal of Electrochemical Science. 15(1): p. 94-108
[71]Liu, Zhuang, Changshui Gao, Chao Guo, and Yi Qiu,year, "Simulation and experiments of abrasive assisted electrochemical jet machining of SiC reinforced aluminum matrix composites". in 20th CIRP Conference on Electro Physical and Chemical Machining, ISEM 2020, January 19, 2021 - January 21, 2021. 2020: p. 760-765. Zurich, Online, Switzerland: Elsevier B.V.
[72]Zhang, Yong, Qi Wang, Ning Hou, and Shijie Rao, 2020, "Material removal mechanism of superalloy Inconel 718 based on electrochemical abrasive jet processing", The International Journal of Advanced Manufacturing Technology. 106(11): p. 4663-4673
[73]林軍屹,2012,"應用可調變磁場輔助電化學放電加工石英之研究", 國立中央大學: 桃園縣. p. 1-71.
[74]Liu, G. Y., Z. N. Guo, Shuzhen Jiang, Nm Qu, and Y. B. Li, 2014, "A Study of Processing Al 6061 with Electrochemical Magnetic Abrasive Finishing", Procedia CIRP. 14: p. 234–238
[75]姚立偉,2015,"磁場輔助電化學表面處理", in 化學工程系碩士班明志科技大學: 新北市. p. 98.[76]Zhang, Changfu, Pixian Zheng, Ruoyun Liang, Kang Yun, Xinguang Jiang, and Zhenghu Yan, 2020, "Effects of a Magnetic Field on the Machining Accuracy for the Electrochemical Drilling of Micro Holes", International Journal of Electrochemical Science. 15(2): p. 1148-1159
[77]Naveen Anthuvan, R., V. Krishnaraj, and M. Parthiban, 2021, "Magnetic field-assisted electrical discharge machining of micro-holes on Ti-6Al-4V", Materials Today: Proceedings. 39: p. 1688-1694
[78]Liao, Cui Jiao, Xian Miao Zhang, and Zhi Jian Luo, 2022, "Magnetic field effects on electrochemical dissolution behavior and surface quality of electrochemical machining of Ti-48Al-2Cr-2Nb alloy", Journal of Applied Electrochemistry. 53(1): p. 49-63
[79]Malpotra, Anil, Beant Singh, and Lakhvir Singh, 2023, "Electrolytic magnetic abrasive finishing process – A review", Materials Today: Proceedings,
[80]Ingo Schaarschmidt, Fabian Lutherb, Philipp Steinerta, Markus Richterb, and Andreas Schubert, 2023, "Simulation of the magnetic field assisted electrochemical machining", Procedia CIRP 117: p. 249-256
[81]Wang, ManFu, JinGang Zhang, SiFan Wang, WeiJia Tang, JingSheng Xu, HaoXu Wang, ShuangJiao Fan, ChunHui Li, MingXiao Yang, ZhaoBin Yan, GuiBing Pang, and ZhiHua Zhang, 2023, "Fabrication of high-quality surface and stray corrosion suppression mechanism with magnetic field assistance electrochemical micro-machining", Journal of Manufacturing Processes. 106: p. 12-18
[82]李輝煌, 2006, Taguchi methods : principles and practices of quality design, 高立圖書有限公司: 臺北市. p. 338.
[83]Manikandan, N., S. Kumanan, and C. Sathiyanarayanan, 2015, "Multi response optimization of electrochemical drilling of titanium Ti6Al4V alloy using Taguchi based grey relational analysis", Indian Journal of Engineering and Materials Sciences. 22(2): p. 153-160
[84]Jeykrishnan, J., B. Vijaya Ramnath, C. Elanchezhian, and S. Akilesh,year, "Optimization of process parameters in Electro-chemical machining (ECM) of D3 die steels using Taguchi technique". 2017: p. 7884-7891. Elsevier Ltd
[85]Nagendra Prasad, K., D. John Basha, and K. C. Varaprasad, 2017, "Experimental Investigation and Analysis of Process Parameters in Abrasive Jet Machining of Ti-6Al-4V alloy using Taguchi Method", Materials Today: Proceedings. 4(10): p. 10894-10903
[86]Khundrakpam, Nimo Singh, Gurinder Singh Brar, and Maibam Bindya Devi,year, "Optimizing the process parameters of ECM using Taguchi method". in 10th International Conference of Materials Processing and Characterization, ICMPC 2020, February 21, 2020 - February 23, 2020. 2019: p. 1373-1379. Mathura, India: Elsevier Ltd
[87]Daniyan, Ilesanmi, Isaac Tlhabadira, Adefemi Adeodu, Solomon Phokobye, and Khumbulani Mpofu, 2020, "Process design and modelling for milling operation of titanium alloy (Ti6Al4V) Using the Taguchi method", Procedia CIRP. 91: p. 348-355
[88]Chaturvedi, Chandrakant, P. Sudhakar Rao, and Mohd Yunus Khan, 2021, "Optimization of process variable in abrasive water jet Machining (AWJM) of Ti-6Al-4V alloy using Taguchi methodology", Materials Today: Proceedings. 47: p. 6120-6127
[89]Aman, Aman, Rishabh Bhardwaj, Pradeep Gahlot, and Rakesh Kumar Phanden, 2023, "Selection of cutting tool for desired surface finish in milling Machine using Taguchi optimization methodology", Materials Today: Proceedings. 78: p. 444-448
[90]Bakhtiyari, Ali Naderi, Yongling Wu, Liyong Wang, Zhiwen Wang, and Hongyu Zheng, 2023, "Laser machining sapphire via Si-sapphire interface absorption and process optimization using an integrated approach of the Taguchi method with grey relational analysis", Journal of Materials Research and Technology. 24: p. 663-674
[91]Zhujani, Fatlume, Georgi Todorov, Konstantin Kamberov, and Fitore Abdullahu, 2023, "Mathematical modeling and optimization of machining parameters in CNC turning process of Inconel 718 using the Taguchi method", Journal of Engineering Research,
[92]McGeough, Joseph A, 1974, "Principles of electrochemical machining", Chapman and Hall,
[93]Bannard, J., 1977, "Electrochemical machining", Journal of Applied Electrochemistry. 7(1): p. 1-29
[94]Rajurkar, K. P., D. Zhu, J. A. McGeough, J. Kozak, and A. De Silva, 1999, "New Developments in Electro-Chemical Machining", CIRP Annals. 48(2): p. 567-579
[95]Leese, Rebecca J. and Atanas Ivanov, 2016, "Electrochemical micromachining: An introduction", Advances in Mechanical Engineering. 8(1): p. 1687814015626860
[96]Painuly, Madhusudan, Ravi Pratap Singh, and Rajeev Trehan, 2023, "Electrochemical machining and allied processes: a comprehensive review", Journal of Solid State Electrochemistry. 27(12): p. 3189-3256
[97]趙冠瑋,2016,"常用金屬材料在硝酸鈉與氯化鈉電解液中電化學加工特性之探討", in 機械工程學系國立中央大學: 桃園縣. p. 163.
[98]Speidel, Alistair, Jonathon Mitchell-Smith, Darren A. Walsh, Matthias Hirsch, and Adam Clare, 2016, "Electrolyte Jet Machining of Titanium Alloys Using Novel Electrolyte Solutions", Procedia CIRP. 42: p. 367-372
[99]Liu, Yang, Pengfei Ouyang, Zhaoyang Zhang, Yufeng Wang, Hao Zhu, and Kun Xu, 2023, "Electrochemical dissolution behavior and electrochemical jet machining characteristics of titanium alloy in high concentration salt solution", International Journal of Advanced Manufacturing Technology. 129(7-8): p. 3595-3607
[100]Obara, Haruki, Masato Isogai, Takeshi Goda, Tohru Sasaki, and Yusuke Ikemoto, 2012, "High-Voltage Pulse-Assisted Electrochemical Machining", International Journal of Electrical Machining. 17: p. 15-21