|
[1]經濟部(2023)。工廠校正及營運調查。檢自: https://www.moea.gov.tw/Mns/dos/bulletin/Bulletin.aspx?kind=17&html=1&menu_id=9773 [2]行政院主計總處(2018)。我國 GDP 支出面統計季節調整手冊。檢自: https://www.stat.gov.tw/public/Attachment/8725164742ECW2CXEJ.pdf [3]許育瑞、陳仲宜、黃得晉、楊瑞雯(2014)。《製造業篇》金屬製品產業。金屬中心 ITIS 計畫。 [4]簡禎富、許嘉裕(2014)。資料挖礦與大數據分析。前程文化事業股份有限公司。 [5]蘇木春、張孝德(2014)。類神經網路、模糊系統以及基因演算法則。全華科技圖書股份有限公司。 [6]黃慕凱、陳昌憲、陳威仲(2023)。製造業的淨零碳排數位轉型路徑。機械工業雜誌,(479),80–90。 [7]林茂文(2022)。臺灣 2050 淨零排放路徑及策略之綜析。石油季刊,58(2), 1–39。 [8]陳仲宜、葉哲政(2009)。我國表面處理產業跨入高值化產品供應鏈之發展契機探索。財團法人金屬工業研究發展中心. [9]陳仲宜(2008)。綠色先進表面處理技術整合發展動向。團法人金屬工業研究發展中心。 [10]黃祉瑄、張家榮、賴彥鈞、龔智捷、賈其樺、林若蓁(2023)。國際淨零策略與應用技術概述。臺灣經濟研究月刊,46(12),20–26。 [11]Barry, B., Stair, R., Hanna, M., & Render, M. (2011). Quantitative Analysis for Management (11th ed.). Prentice Hall. [12]Bilalli, B., Abelló, A., Aluja-Banet, T., & Wrembel, R. (2018). Intelligent assistance for data pre-processing. Computer Standards & Interfaces, 57, 101–109. [13]Bortolotti, T., Danese, P., Flynn, B. B., & Romano, P. (2014). Leveraging fitness and lean bundles to build the cumulative performance sand cone model. International Journal of Production Economics, 1–15. [14]Cercós, M. P., Calvo, L. M., & Domingo, R. (2020). An exploratory study on the relationship of Overall Equipment Effectiveness (OEE) variables and CO2 emissions. Procedia Manufacturing, 41, 224–232. [15]Chiarini, A. (2014). Sustainable manufacturing-greening processes using specific Lean Production tools: An empirical observation from European motorcycle component manufacturers. Journal of Cleaner Production, 85, 226–233. [16]Chicco, D., Warrens, M. J., & Jurman, G. (2021). The Coefficient of Determination R-squared is More Informative than SMAPE, MAE, MAPE, MSE, and RMSE in Regression Analysis Evaluation. PeerJ Computer Science, 7, e623. [17]Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., & Bharath, A. A. (2018). Generative Adversarial Networks: An Overview. IEEE Signal Processing Magazine, 35(1), 53–65. [18]Diaz-Elsayed, N., Jondral, A., Greinacher, S., Dornfeld, D., & Lanza, G. (2013). Assessment of lean and green strategies by simulation of manufacturing systems in discrete production environments. CIRP Annals - Manufacturing Technology, 62(1), 475–478. [19]Domingo, R., & Aguado, S. (2015). Overall environmental equipment effectiveness as a metric of a lean and green manufacturing system. Sustainability, 7, 9031–9047. [20]Draper, N. R., & Smith, H. (1998). Applied regression analysis (3rd ed.). Wiley. [21]Hamilton, J. D. (2020). Time Series Analysis. Princeton University Press. [22]Hallam, C., & Contreras, C. (2016). Integrating lean and green management. Management Decision, 54(9), 2157–2187. [23]Hansun, S. (2013). A new approach of moving average method in time series analysis. 2013 Conference on New Media Studies (CoNMedia). [24]Hartinia, S., & Ciptomulyono, U. (2015). The Relationship between Lean and Sustainable Manufacturing on Performance: Literature Review. Industrial Engineering and Service Science 2015, IESS 2015, 4, 38–45. [25]Karlsson, C., & Åhlström, P. (1996). Assessing changes towards lean production. International Journal of Operations & Production Management, 16(2), 24–41. [26]Khanchanapong, T., Prajogo, D., Sohal, A. S., Cooper, B. K., Yeung, A. C. L., & Cheng, T. C. E. (2014). The unique and complementary effects of manufacturing technologies and lean practices on manufacturing operational performance. International Journal of Production Economics, 153, 191–203. [27]Laguna, M., & Marti, R. (2002). Neural network prediction in a system for optimizing simulations. IIE Transactions, 34(3), 273–282. [28]Li, S. (2023). The study for optimization strategies on the performance of DCGAN. Journal of Physics: Conference Series, 2634(1), 012032. [29]Liu, M. Y., & Tuzel, O. (2016). Coupled generative adversarial networks. In Proceedings of the 29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain. [30]Munson, M. A. (2012). A study on the importance of and time spent on different modeling steps. ACM SIGKDD Explorations Newsletter, 13(2), 65. https://doi.org/10.1145/2207243.2207253 [31]Packianather, M. S., Davies, A., Harraden, S., Soman, S., & White, J. (2017). Data Mining Techniques Applied to a Manufacturing SME. Procedia CIRP, 62, 123–128. https://doi.org/10.1016/j.procir.2016.06.120 [32]Patel, L. (2020). Lean AI: How Innovative Startups Use Artificial Intelligence to Grow. O'Reilly Media. [33]Prechelt, L. (1998). Early Stopping – But When? In G. B. Orr & K.-R. Müller (Eds.), Neural Networks: Tricks of the Trade (LNCS 1524) (pp. 55–69). Springer-Verlag Berlin Heidelberg. [34]Reza, M. M., Bukhari, S. S., Jenckel, M., & Dengel, A. (2019). Table Localization and Segmentation using GAN and CNN. 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW). [35]Sawhney, R., Teparakul, P., Bagchi, A., & Li, X. (2007). En-Lean: A framework to align lean and green manufacturing in the metal cutting supply chain. International Journal of Enterprise Network Management, 1(3), 238. [36]Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306. [37]Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its Applications (4th ed.). Springer International Publishing AG. [38]Singh, R., Shah, D. B., Gohil, A. M., & Shah, M. H. (2013). Overall Equipment Effectiveness (OEE) Calculation - Automation through Hardware & Software Development. Procedia Engineering, 51, 579–584. [39]Valipour, M. (2015). Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorological Applications, 22(3), 592–598. [40]Wang, K., Gou, C., Duan, Y., Lin, Y., Zheng, X., & Wang, F.-Y. (2017). Generative adversarial networks: introduction and outlook. IEEE/CAA Journal of Automatica Sinica, 4(4), 588–598. [41]Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30, 79–82. [42]Wittrock, M. C. (1974). A Generative Model of Mathematics Learning. Journal for Research in Mathematics Education, 5(4), 181. [43]Wu, Y., & Feng, J. (2017). Development and Application of Artificial Neural Network. Wireless Personal Communications. [44]Yang, L., & Shami, A. (2020). On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice. Neurocomputing. [45]Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Computation, 1–36. [46]Zhang, T., & Yu, B. (2005). Boosting with Early Stopping: Convergence and Consistency. The Annals of Statistics, 33(4), 1538-1579.
|