|
1.Yagci, Y., S. Jockusch, and N.J. Turro, Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules, 2010. 43 6245-6260. 2.Peterson, G.I., J.J. Schwartz, D. Zhang, B.M. Weiss, M.A. Ganter, D.W. Storti, and A.J. Boydston, Production of materials with spatially-controlled cross-link density via vat photopolymerization. ACS applied materials & interfaces, 2016. 8 29037-29043. 3.Fouassier, J.-P. Photoinitiation, photopolymerization, and photocuring : fundamentals and applications. Munich; New York; Cincinnati: Hanser ; Distributed by Hanser/Gardner Publications. 4.Zhang, J., N. Zivic, F. Dumur, P. Xiao, B. Graff, J.P. Fouassier, D. Gigmes, and J. Lalevée, N-[2-(Dimethylamino)ethyl]-1,8-naphthalimide derivatives as photoinitiators under LEDs. Polymer Chemistry, 2018. 9 994-1003. 5.Lalevée, J., M. El-Roz, F. Morlet-Savary, B. Graff, X. Allonas, and J.P. Fouassier, New Highly Efficient Radical Photoinitiators Based on Si−Si Bond Cleavage. Macromolecules, 2007. 40 8527-8530. 6.Jenkins, A.D., Photoinitiators for free radical cationic and anionic photopolymerisation, 2nd edition J V Crivello and K Dietliker Edited by G Bradley John Wiley & Sons, Chichester 1998. pp ix + 586, £ 90.00 ISBN 0‐471‐97892‐2. Polymer International, 2000. 49 1729-1729. 7.Zhou, R., J.-P. Malval, M. Jin, A. Spangenberg, H. Pan, D. Wan, F. Morlet-Savary, and S. Knopf, A two-photon active chevron-shaped type I photoinitiator designed for 3D stereolithography. Chemical Communications, 2019. 55 6233-6236. 8.Acik, G., M.U. Kahveci, and Y. Yagci, Synthesis of block copolymers by combination of atom transfer radical polymerization and visible light radical photopolymerization methods. Macromolecules, 2010. 43 9198-9201. 9.Durmaz, Y.Y., V. Kumbaraci, A.L. Demirel, N. Talinli, and Y. Yagci, Graft copolymers by the combination of ATRP and photochemical acylation process by using benzodioxinones. Macromolecules, 2009. 42 3743-3749. 10.Wiley, K.L., E.M. Ovadia, C.J. Calo, R.E. Huber, and A.M. Kloxin, Rate-based approach for controlling the mechanical properties of ‘thiol–ene’hydrogels formed with visible light. Polymer chemistry, 2019. 10 4428-4440. 11.Ohwa, M., H. Kura, H. Oka, and H. Yamato, Development of Photoinitiators in Electronic Applications. Journal of Photopolymer Science and Technology, 2002. 15 51-57. 12.Zou, J., C.C. Hew, E. Themistou, Y. Li, C.-K. Chen, P. Alexandridis, and C. Cheng, Clicking Well-Defined Biodegradable Nanoparticles and Nanocapsules by UV-Induced Thiol-Ene Cross-Linking in Transparent Miniemulsions. Advanced Materials, 2011. 23 4274-4277. 13.Rydholm, A.E., C.N. Bowman, and K.S. Anseth, Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial. Biomaterials, 2005. 26 4495-4506. 14.Shih, H. and C.C. Lin, Cross-linking and degradation of step-growth hydrogels formed by thiol-ene photoclick chemistry. Biomacromolecules, 2012. 13 2003-2012. 15.Lovelady, E., S.D. Kimmins, J. Wu, and N.R. Cameron, Preparation of emulsion-templated porous polymers using thiol–ene and thiol–yne chemistry. Polymer Chemistry, 2011. 2 559-562. 16.Konkolewicz, D., C.K. Poon, A. Gray-Weale, and S. Perrier, Hyperbranched alternating block copolymers using thiol–yne chemistry: materials with tuneable properties. Chemical Communications, 2011. 47 239-241. 17.Juzenas, P., A. Juzeniene, O. Kaalhus, V. Iani, and J. Moan, Noninvasive fluorescence excitation spectroscopy during application of 5-aminolevulinic acid in vivo. Photochemical & Photobiological Sciences, 2002. 1 745-748. 18.Stepuk, A., D. Mohn, R.N. Grass, M. Zehnder, K.W. Krämer, F. Pellé, A. Ferrier, and W.J. Stark, Use of NIR light and upconversion phosphors in light-curable polymers. Dental Materials, 2012. 28 304-311. 19.Zivic, N., J. Zhang, D. Bardelang, F. Dumur, P. Xiao, T. Jet, D.-L. Versace, C. Dietlin, F. Morlet-Savary, B. Graff, J.P. Fouassier, D. Gigmes, and J. Lalevée, Novel naphthalimide–amine based photoinitiators operating under violet and blue LEDs and usable for various polymerization reactions and synthesis of hydrogels. Polymer Chemistry, 2016. 7 418-429. 20.Chen, Y., G. Li, H. Zhang, and T. Wang, Visible light curing of bisphenol-A epoxides and acrylates photoinitiated by (η6-benzophenone)(η5-cyclopentadienyl) iron hexafluorophosphate. Journal of Polymer Research, 2011. 18 1425-1429. 21.Telitel, S., J. Lalevée, N. Blanchard, T. Kavalli, M.-A. Tehfe, S. Schweizer, F. Morlet-Savary, B. Graff, and J.-P. Fouassier, Photopolymerization of Cationic Monomers and Acrylate/Divinylether Blends under Visible Light Using Pyrromethene Dyes. Macromolecules, 2012. 45 6864-6868. 22.Balta, D.K., G. Temel, G. Goksu, N. Ocal, and N. Arsu, Thioxanthone–Diphenyl Anthracene: Visible Light Photoinitiator. Macromolecules, 2012. 45 119-125. 23.Dadashi-Silab, S., H. Bildirir, R. Dawson, A. Thomas, and Y. Yagci, Microporous Thioxanthone Polymers as Heterogeneous Photoinitiators for Visible Light Induced Free Radical and Cationic Polymerizations. Macromolecules, 2014. 47 4607-4614. 24.Peng, H., S. Bi, M. Ni, X. Xie, Y. Liao, X. Zhou, Z. Xue, J. Zhu, Y. Wei, C.N. Bowman, and Y.-W. Mai, Monochromatic Visible Light “Photoinitibitor”: Janus-Faced Initiation and Inhibition for Storage of Colored 3D Images. Journal of the American Chemical Society, 2014. 136 8855-8858. 25.Aguirre-Soto, A., C.-H. Lim, A.T. Hwang, C.B. Musgrave, and J.W. Stansbury, Visible-Light Organic Photocatalysis for Latent Radical-Initiated Polymerization via 2e–/1H+ Transfers: Initiation with Parallels to Photosynthesis. Journal of the American Chemical Society, 2014. 136 7418-7427. 26.Lalevée, J., H. Mokbel, and J.-P. Fouassier, Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources. Molecules, 2015. 20. 27.Toda, K., Recent research and development of VUV phosphors for a mercury-free lamp. Journal of Alloys and Compounds, 2006. 408-412 665-668. 28.Tehfe, M.A., F. Louradour, J. Lalevée, and J.-P. Fouassier, Photopolymerization Reactions: On the Way to a Green and Sustainable Chemistry. Applied Sciences, 2013. 3 490-514. 29.Xiao, P., F. Dumur, B. Graff, F. Morlet-Savary, D. Gigmes, J.P. Fouassier, and J. Lalevée, Design of High Performance Photoinitiators at 385–405 nm: Search around the Naphthalene Scaffold. Macromolecules, 2014. 47 973-978. 30.Zhang, J., M. Frigoli, F. Dumur, P. Xiao, L. Ronchi, B. Graff, F. Morlet-Savary, J.P. Fouassier, D. Gigmes, and J. Lalevée, Design of Novel Photoinitiators for Radical and Cationic Photopolymerizations under Near UV and Visible LEDs (385, 395, and 405 nm). Macromolecules, 2014. 47 2811-2819. 31.Morita, D., M. Sano, M. Yamamoto, T. Murayama, S.-i. Nagahama, and T. Mukai, High Output Power 365 nm Ultraviolet Light Emitting Diode of GaN-Free Structure. Japanese Journal of Applied Physics, 2002. 41 L1434. 32.Muramoto, Y., M. Kimura, and S. Nouda, Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp. Semiconductor Science and Technology, 2014. 29 084004. 33.Khudyakov, I.V., Fast photopolymerization of acrylate coatings: Achievements and problems. Progress in Organic Coatings, 2018. 121 151-159. 34.Kim, S.H., Y.K. Yeon, J.M. Lee, J.R. Chao, Y.J. Lee, Y.B. Seo, M.T. Sultan, O.J. Lee, J.S. Lee, S.-i. Yoon, I.-S. Hong, G. Khang, S.J. Lee, J.J. Yoo, and C.H. Park, Publisher Correction: Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nature Communications, 2018. 9 2350. 35.Na, Y.H., J.M. Hwang, J.W. Chung, and Y. Han, 3D printing using polyampholyte hydrogel with reversible behavior. Polymer International, 2021. 70 1486-1494. 36.Klee, J.E., M. Maier, and C.P. Fik, Applied Photochemistry in Dental Materials: From Beginnings to State of the Art, in Dyes and Chromophores in Polymer Science. 2015. 123-138. 37.Studer, K., C. Decker, E. Beck, and R. Schwalm, Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I. Progress in Organic Coatings, 2003. 48 92-100. 38.Studer, K., C. Decker, E. Beck, and R. Schwalm, Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting: Part II. Progress in Organic Coatings, 2003. 48 101-111. 39.Kecici, Z., S. Babaoglu, and G. Temel, Methacrylated benzophone as triple functional compound for the synthesis of partially crosslinked copolymers. Progress in Organic Coatings, 2018. 115 138-142. 40.Aydin, M., G. Temel, D.K. Balta, and N. Arsu, “Mono” and “bifunctional” aromatic esterificated benzophenone photoinitiators for free radical polymerization. Polymer Bulletin, 2015. 72 309-322. 41.Fouassier, J.P. and J. Lalevée, Three-component photoinitiating systems: towards innovative tailor made high performance combinations. RSC Advances, 2012. 2 2621-2629. 42.Andrzejewska, E., D. Zych-Tomkowiak, M. Andrzejewski, G.L. Hug, and B. Marciniak, Heteroaromatic thiols as co-initiators for type II photoinitiating systems based on camphorquinone and isopropylthioxanthone. Macromolecules, 2006. 39 3777-3785. 43.Davidson, R.S., The chemistry of photoinitiators—some recent developments. Journal of Photochemistry and Photobiology A: Chemistry, 1993. 73 81-96. 44.Dumur, F., Recent advances on visible light photoinitiators of polymerization based on Indane-1,3-dione and related derivatives. European Polymer Journal, 2021. 143 110178. 45.Hammoud, F., A. Hijazi, M. Schmitt, F. Dumur, and J. Lalevée, A review on recently proposed oxime ester photoinitiators. European Polymer Journal, 2023. 188 111901. 46.Zhou, R., H. Pan, D. Wan, J.-P. Malval, and M. Jin, Bicarbazole-based oxime esters as novel efficient photoinitiators for photopolymerization under UV-Vis LEDs. Progress in Organic Coatings, 2021. 157 106306. 47.Wua, X, M. Jin, J. Xie, D. Wan, and J.P. Malval, Effects of conjugated systems on UV-visible light-sensitive D-π-A type sulfonium salt photoacid generators. Chinese Journal of Polymer Science, 2016. 34 1456-1468. 48.Lu, H. and Z. Li, Synthesis and Structure-Activity Relationship of N-Substituted Carbazole Oxime Ester Photoinitiators. Journal of Photopolymer Science and Technology, 2021. 34 307-313. 49.Liou, G.-S., N.-K. Huang, and Y.-L. Yang, New soluble triphenylamine-based amorphous aromatic polyamides for high performance blue-emitting hole-transporting and anodically electrochromic materials. Polymer, 2006. 47 7013-7020. 50.Chang, C.-W. and G.-S. Liou, Stably anodic green electrochromic aromatic poly (amine–amide–imide) s: Synthesis and electrochromic properties. Organic Electronics, 2007. 8 662-672. 51.Cravino, A., S. Roquet, P. Leriche, O. Alévêque, P. Frère, and J. Roncali, A star-shaped triphenylamine π-conjugated system with internal charge-transfer as donor material for hetero-junction solar cells. Chemical communications, 2006 1416-1418. 52.Song, Y., C. Di, W. Xu, Y. Liu, D. Zhang, and D. Zhu, New semiconductors based on triphenylamine with macrocyclic architecture: synthesis, properties and applications in OFETs. Journal of Materials Chemistry, 2007. 17 4483-4491. 53.Dumur, F., Recent advances on visible light Triphenylamine-based photoinitiators of polymerization. European Polymer Journal, 2022. 166 111036. 54.Lee, Z.-H., F. Hammoud, A. Hijazi, B. Graff, J. Lalevée, and Y.-C. Chen, Synthesis and free radical photopolymerization of triphenylamine-based oxime ester photoinitiators. Polymer Chemistry, 2021. 12 1286-1297. 55.Liu, S., N. Giacoletto, M. Schmitt, M. Nechab, B. Graff, F. Morlet-Savary, P. Xiao, F. Dumur, and J. Lalevée, Effect of Decarboxylation on the Photoinitiation Behavior of Nitrocarbazole-Based Oxime Esters. Macromolecules, 2022. 55 2475-2485. 56.Hammoud, F., N. Giacoletto, G. Noirbent, B. Graff, A. Hijazi, M. Nechab, D. Gigmes, F. Dumur, and J. Lalevée, Substituent effects on the photoinitiation ability of coumarin-based oxime-ester photoinitiators for free radical photopolymerization. Materials Chemistry Frontiers, 2021. 5 8361-8370. 57.Tang, G.-M., Y.-R. Xi, L. Liu, X.-M. Chen, Q.-S. Lu, Y.-K. Xue, H. Yang, and Y.-T. Wang, Effect of alkyl chains on luminescence properties with 3-hydroxy-2-naphthoate esters. Journal of Molecular Structure, 2022. 1264 133220. 58.Liu, S., N. Giacoletto, B. Graff, F. Morlet-Savary, M. Nechab, P. Xiao, F. Dumur, and J. Lalevée, N-naphthalimide ester derivatives as Type Ⅰ photoinitiators for LED photopolymerization. Materials Today Chemistry, 2022. 26 101137. 59.Ren, W., H. Zhuang, Q. Bao, S. Miao, H. Li, J. Lu, and L. Wang, Enhancing the coplanarity of the donor moiety in a donor-acceptor molecule to improve the efficiency of switching phenomenon for flash memory devices. Dyes and Pigments, 2014. 100 127-134. 60.Suresh, S., H. Zengin, B.K. Spraul, T. Sassa, T. Wada, and D.W. Smith, Synthesis and hyperpolarizabilities of high temperature triarylamine-polyene chromophores. Tetrahedron Letters, 2005. 46 3913-3916. 61.Li, Z., X. Zou, G. Zhu, X. Liu, and R. Liu, Coumarin-Based Oxime Esters: Photobleachable and Versatile Unimolecular Initiators for Acrylate and Thiol-Based Click Photopolymerization under Visible Light-Emitting Diode Light Irradiation. ACS Applied Materials & Interfaces, 2018. 10 16113-16123. 62.Ma, X., D. Cao, H. Fu, J. You, R. Gu, B. Fan, J. Nie, and T. Wang, Multicomponent photoinitiating systems containing arylamino oxime ester for visible light photopolymerization. Progress in Organic Coatings, 2019. 135 517-524. 63.Lalevée, J., X. Allonas, and J.P. Fouassier, Acrylate radicals: Direct observation and reactivity. Chemical Physics Letters, 2005. 415 287-290. 64.Cho, Y.J., H.J. No, M.S. Kim, and J.-Y. Lee, Synthesis and nonlinear optical properties of novel Y-type polyester containing tricyanovinylthiazolylazoresorcinoxy group with enhanced thermal stability of dipole alignment. Journal of Polymer Science Part A: Polymer Chemistry, 2011. 49 1784-1790. 65.Choe, K.Y., J.-E. Kim, and J.-Y. Lee, Synthesis and electro-optic properties of novel Y-type polyester containing nitrothiazolylazoresorcinoxy group with highly enhanced thermal stability of dipole alignment. Dyes and Pigments, 2016. 134 27-35. 66.Qiu, W., M. Li, Y. Yang, Z. Li, and K. Dietliker, Cleavable coumarin-based oxime esters with terminal heterocyclic moieties: photobleachable initiators for deep photocuring under visible LED light irradiation. Polymer Chemistry, 2020. 11 1356-1363. 67.Li, Z., J. Bian, Y. Wang, F. Jiang, G. Liang, P. He, Q. Hou, J. Tong, Y. Liang, Z. Zhong, Y. Zhou, and W. Tian, Effect of alkyl chain length on the photovoltaic performance of oligothiophene-based small molecules. Solar Energy Materials and Solar Cells, 2014. 130 336-346. 68.Arsenov, M.A., Y.V. Fedorov, D.V. Muratov, Y.V. Nelyubina, and D.A. Loginov, Synthesis of isocoumarins and PAHs with electron-withdrawing substituents: Impact of the substituent nature on the photophysical behavior. Dyes and Pigments, 2022. 206 110653. 69.Musawwir, A.,A. Farhat, R.A. Khera, A.R. Ayub, and J. Iqbal, Theoretical and computational study on electronic effect caused by electron withdrawing/electron-donating groups upon the coumarin thiourea derivatives. Computational and Theoretical Chemistry, 2021. 1201 113271. 70.Wang, W., M. Jin, H. Pan, and D. Wan, Remote effect of substituents on the properties of phenyl thienyl thioether-based oxime esters as LED-sensitive photoinitiators. Dyes and Pigments, 2021. 192 109435. 71.Lalevée, J., N. Blanchard, M. El-Roz, B. Graff, X. Allonas, and J.P. Fouassier, New Photoinitiators Based on the Silyl Radical Chemistry: Polymerization Ability, ESR Spin Trapping, and Laser Flash Photolysis Investigation. Macromolecules, 2008. 41 4180-4186. 72.Li, Z., X. Zou, G. Zhu, X. Liu, and R. Liu, Coumarin-Based Oxime Esters: Photobleachable and Versatile Unimolecular Initiators for Acrylate and Thiol-Based Click Photopolymerization under Visible Light-Emitting Diode Light Irradiation. ACS Applied Materials & Interfaces, 2018. 10 16113-16123. 73.Rehm, D. and A. Weller, Kinetics of Fluorescence Quenching by Electron and H-Atom Transfer. Israel Journal of Chemistry, 1970. 8 259-271. 74.Oliver, E.W., D.H. Evans, and J.V. Caspar, Electrochemical studies of a hexaarylbiimidazole. Journal of Electroanalytical Chemistry, 1996. 403 153-158. 75.Tomkeviciene, A., A. Dabulienė, T. Matulaitis, M. Guzauskas, V. Andruleviciene, J.V. Grazulevicius, Y. Yamanaka, Y. Yano, and T. Ono, Bipolar thianthrene derivatives exhibiting room temperature phosphorescence for oxygen sensing. Dyes and Pigments, 2019. 170 107605. 76.Wang, X.-Y., F.-D. Zhuang, X. Zhou, D.-C. Yang, J.-Y. Wang, and J. Pei, Influence of alkyl chain length on the solid-state properties and transistor performance of BN-substituted tetrathienonaphthalenes. Journal of Materials Chemistry C, 2014. 2 8152-8161. 77.Dietz, R. and M.E. Peover, Stereochemical effects in the electrochemistry of some hindered stilbenes in dimethylformamide. Discussions of the Faraday Society, 1968. 45 154-166. 78.Namazian, M., S. Siahrostami, and M.L. Coote, Electron affinity and redox potential of tetrafluoro-p-benzoquinone: A theoretical study. Journal of Fluorine Chemistry, 2008. 129 222-225. 79.Dietlin, C., X. Allonas, F. Morlet-Savary, J.P. Fouassier, M. Visconti, G. Norcini, and S. Romagnano, Investigation of Barton esters as radical photoinitiators. Journal of Applied Polymer Science, 2008. 109 825-833. 80.Zivic, N., M. Bouzrati-Zerrelli, S. Villotte, F. Morlet-Savary, C. Dietlin, F. Dumur, D. Gigmes, J.P. Fouassier, and J. Lalevée, A novel naphthalimide scaffold based iodonium salt as a one-component photoacid/photoinitiator for cationic and radical polymerization under LED exposure. Polymer Chemistry, 2016. 7 5873-5879. 81.Esen, D.S., F. Karasu, and N. Arsu, The investigation of photoinitiated polymerization of multifunctional acrylates with TX-BT by Photo-DSC and RT-FTIR. Progress in Organic Coatings, 2011. 70 102-107. 82.Eren, T.N., T. Gencoglu, M. Abdallah, J. Lalevée, and D. Avci, A water soluble and highly reactive bisphosphonate functionalized thioxanthone-based photoinitiator. European Polymer Journal, 2020. 135 109906. 83.Shi, Y., J. Yin, M. Kaji, and H. Yori, Synthesis of a novel hexaarylbiimidazole with ether groups and characterization of its photoinitiation properties for acrylate derivatives. Polymer Engineering & Science, 2006. 46 474-479. 84.Andrzejewska, E. and M. Andrzejewski, Polymerization kinetics of photocurable acrylic resins. Journal of Polymer Science Part A: Polymer Chemistry, 1998. 36 665-673. 85.Hammoud, F., N. Giacoletto, M. Nechab, B. Graff, A. Hijazi, F. Dumur, and J. Lalevée, 5,12-Dialkyl-5,12-dihydroindolo[3,2-a]carbazole-Based Oxime-Esters for LED Photoinitiating Systems and Application on 3D Printing. Macromolecular Materials and Engineering, 2022. 307 2200082. 86.Döpp, D., Photochemical reactivity of the nitro group. 1995, CRC Press: Boca Raton. 87.Qu, B., Y. Xu, W. Shi, and B. Raanby, Photoinitiated crosslinking of low-density polyethylene. 6. Spin-trapping ESR studies on radical intermediates. Macromolecules, 1992. 25 5215-5219. 88.Immergut, E.H. and B. Vollmert, Polymer Chemistry. 2012: Springer Berlin Heidelberg. 89.Wang, W., M. Jin, H. Pan, and D. Wan, Phenylthioether thiophene-based oxime esters as novel photoinitiators for free radical photopolymerization under LED irradiation wavelength exposure. Progress in Organic Coatings, 2021. 151 106019. 90.Scaiano, J.C. and L.C. Stewart, Phenyl radical kinetics. Journal of the American Chemical Society, 1983. 105 3609-3614. 91.Zytowski, T. and H. Fischer, Absolute Rate Constants for the Addition of Methyl Radicals to Alkenes in Solution: New Evidence for Polar Interactions. Journal of the American Chemical Society, 1996. 118 437-439. 92.Ma, Q., Y. Zhang, V. Launay, M. Le Dot, S. Liu, and J. Lalevée, How to overcome the light penetration issue in photopolymerization? An example for the preparation of high content iron-containing opaque composites and application in 3D printing. European Polymer Journal, 2022. 165 111011.
|