[1]行政院環保署,“室內空氣品質標準”中華民國行政院環境保護署空字第1010106229號,(2012).
[2]Zhang, F., Lin, Q., Han, F., Wang, Z., Tian, B., Zhao, L., Dong, T. & Jiang, Z. (2022). A flexible and wearable NO2 gas detection and early warning device based on a spraying process and an interdigital electrode at room temperature. Microsystems & nanoengineering, 8(1), 1-10.
[3]Oluwasanya, P. W., Carey, T., Samad, Y. A., & Occhipinti, L. G. (2022). Unencapsulated and washable two-dimensional material electronic-textile for NO2 sensing in ambient air. Scientific Reports, 12(1), 1-9.
[4]行政院環境保護署,〈空氣污染排放清冊11.1〉, 2021。
[5]行政院環境保護署, 空氣品質監測網, 歷年監測資料, 2019。
[6]Meng, X., Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Milojevic, A., ... & Kan, H. (2021). Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality: multilocation analysis in 398 cities. bmj, 372.
[7]Chen, D., Yu, W., Wei, L., Ni, J., Li, H., Chen, Y., Tian, y., Yan, S., Mei, L., Jiao, J. & Jiao, J. (2022). High sensitive room temperature NO2 gas sensor based on the avalanche breakdown induced by Schottky junction in TiO2-Sn3O4 nanoheterojunctions. Journal of Alloys and Compounds, 912, 165079.
[8]Zeng, S., Zhang, Y., Zhang, Y., Li, Y., Tang, C., Li, K., Sun, J., & Deng, T. (2022). A novel room temperature SO2 gas sensor based on TiO2/rGO buried-gate FET. Microelectronic Engineering, 263, 111841.
[9]Wu, P., Li, Y., Xiao, S., Chen, J., Tang, J., Chen, D., & Zhang, X. (2022). SnO2 nanoparticles based highly sensitive gas sensor for detection of C4F7N: A new eco-friendly gas insulating medium. Journal of Hazardous Materials, 422, 126882.
[10]Ren, P., Qi, L., You, K., & Shi, Q. (2022). Hydrothermal synthesis of hierarchical SnO2 nanostructures for improved formaldehyde gas sensing. Nanomaterials, 12(2), 228.
[11]Punginsang, M., Zappa, D., Comini, E., Wisitsoraat, A., Sberveglieri, G., Ponzoni, A., & Liewhiran, C. (2022). Selective H2S gas sensors based on ohmic hetero-interface of Au-functionalized WO3 nanowires. Applied Surface Science, 571, 151262.
[12]Song, Z., Zeng, J., Zi, B., Chen, F., Zhang, Y., Zhang, G., Zhu, Z., Zhang, J., & Liu, Q. J. (2022). Highly sensitive triethylamine gas sensor by Pt-loaded pn heterojunction Co3O4/WO3. Nanotechnology.
[13]Xuan, J., Wang, L., Zou, Y., Li, Y., Zhang, H., Lu, Q., Sun, M., Yin G., & Zhou, A. (2022). Room-temperature gas sensor based on in situ grown, etched and W-doped ZnO nanotubes functionalized with Pt nanoparticles for the detection of low-concentration H2S. Journal of Alloys and Compounds, 922, 166158.
[14]Shinde, R. S., Khairnar, S. D., Patil, M. R., Adole, V. A., Koli, P. B., Deshmane, V. V., Halwar, D. K., Shinde, R. A., Pawar, T. B., Jagdale, B. S., & Patil, A. V. (2022). Synthesis and characterization of ZnO/CuO nanocomposites as an effective photocatalyst and gas sensor for environmental remediation. Journal of Inorganic and Organometallic Polymers and Materials, 32(3), 1045-1066.
[15]Bai, J., Kong, Y., Liu, Z., Yang, H., Li, M., Xu, D., & Zhang, Q. (2022). Ag modified Tb-doped double-phase In2O3 for ultrasensitive hydrogen gas sensor. Applied Surface Science, 583, 152521.
[16]Rambeloson, J., Ioannou, D. E., Raju, P., Wang, X., Motayed, A., Yun, H. J., & Li, Q. (2022). Photoactivated In2O3-GaN Gas Sensors for Monitoring NO2 with High Sensitivity and Ultralow Operating Power at Room Temperature. Chemosensors, 10(10), 405.
[17]Khudiar, S. S., Nayef, U. M., Mutlak, F. A. H., & Abdulridha, S. K. (2022). Characterization of NO2 gas sensing for ZnO nanostructure grown hydrothermally on porous silicon. Optik, 249, 168300.
[18]Sulaiman, E. M., Nayef, U. M., & Mutlak, F. A. (2022). Structural, Morphological, Photoluminescence, and sensitivity of Au: TiO2 nanoparticles via laser ablation on porous silicon. Journal of Optics, 1-7.
[19]Lee, J., Kim, S. Y., Yoo, H. S., & Lee, W. (2022). Pd-WO3 chemiresistive sensor with reinforced self-assembly for hydrogen detection at room temperature. Sensors and Actuators B: Chemical, 368, 132236.
[20]Mao, L. W., Zhu, L. Y., Wu, T. T., Xu, L., Jin, X. H., & Lu, H. L. (2022). Excellent long-term stable H2S gas sensor based on Nb2O5/SnO2 core-shell heterostructure nanorods. Applied Surface Science, 602, 154339.
[21]Kazi, S. K., Tigote, R. M., Gaikwad, V. A., Kamble, D. P., Bhale, P. S., Shringare, S. N., Musrif, P. G., & Inamdar, S. N. (2022). Effect of embedding aluminium and yttrium on the magneto-optic properties of lanthanum spinel ferrite nanoparticles synthesised for photocatalytic degradation of methyl red. Journal of Sol-Gel Science and Technology, 1-11.
[22]Velayutham, L., Parvathiraja, C., Anitha, D. C., Mahalakshmi, K., Jenila, M., Alasmary, F. A., Almalki, A. S., Lqbal, A., & Lai, W. C. (2022). Photocatalytic and Antibacterial Activity of CoFe2O4 Nanoparticles from Hibiscus rosa-sinensis Plant Extract. Nanomaterials, 12(20), 3668.
[23]Nadargi, D., Umar, A., Nadargi, J., Patil, J., Mulla, I., Akbar, S., & Suryavanshi, S. (2022). Spinel Magnesium Ferrite (MgFe2O4): A Glycine-Assisted Colloidal Combustion and Its Potentiality in Gas-Sensing Application. Chemosensors, 10(9), 361.
[24]Umesh, S., Usha, A., Bailey, K., Sujatha, K., Varadharajaperumal, S., Shivashankar, S. A., & Raghavan, M. S. (2022). Nanocrystalline Spinel CoFe2O4 Thin Films Deposited via Microwave-Assisted Synthesis for Sensing Application. Journal of Electronic Materials, 51(9), 5395-5404.
[25]Ahmad, M., Shahid, M., Alanazi, Y. M., ur Rehman, A., Asif, M., & Dunnill, C. W. (2022). Lithium ferrite (Li0.5Fe2.5O4): synthesis, structural, morphological and magnetic evaluation for storage devices. Journal of Materials Research and Technology, 18, 3386-3395.
[26]Oh, Y., Sahu, M., Hajra, S., Padhan, A. M., Panda, S., & Kim, H. J. (2022). Spinel Ferrites (CoFe2O4): Synthesis, Magnetic Properties, and Electromagnetic Generator for Vibration Energy Harvesting. Journal of Electronic Materials, 51(5), 1933-1939.
[27]Alijani, H. Q., Iravani, S., Pourseyedi, S., Torkzadeh-Mahani, M., Barani, M., & Khatami, M. (2021). Biosynthesis of spinel nickel ferrite nanowhiskers and their biomedical applications. Scientific Reports, 11(1), 1-7.
[28]Kefeni, K. K., Msagati, T. A., Nkambule, T. T., & Mamba, B. B. (2020). Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Materials Science and Engineering: C, 107, 110314.
[29]Sun, J., Wu, T., Liu, Z., Shao, B., Liang, Q., He, Q., Luo, S., Pan, Y., Zhao, C., & Huang, D. (2022). Peroxymonosulfate activation induced by spinel ferrite nanoparticles and their nanocomposites for organic pollutants removal: A review. Journal of Cleaner Production, 131143.
[30]Rodríguez, J. L., & Valenzuela, M. A. (2022). Ni-based catalysts used in heterogeneous catalytic ozonation for organic pollutant degradation: a minireview. Environmental Science and Pollution Research, 1-20.
[31]Siddique, M., Subhan, W., Naz, F., & Nawaz, A. (2022). Biosynthesis of highly porous Ag/Bi/SnO2 nanohybrid material using seeds extract of Caesalpinia bonduc and their photocatalytic activity. Physica B: Condensed Matter, 644, 414209.
[32]Venkatesh, N., & Sakthivel, P. (2022). Efficient degradation of azo dye pollutants on Zn doped SnO2 photocatalyst under sunlight irradiation: Performance, mechanism and toxicity evaluation. Inorganic Chemistry Communications, 139, 109360.
[33]Ragupathy, S., Manikandan, V., Devanesan, S., Ahmed, M., Ramamoorthy, M., & Priyadharsan, A. (2022). Enhanced sun light driven photocatalytic activity of Co doped SnO2 loaded corn cob activated carbon for methylene blue dye degradation. Chemosphere, 295, 133848.
[34]Gasso, S., Sohal, M. K., & Mahajan, A. (2022). MXene modulated SnO2 gas sensor for ultra-responsive room-temperature detection of NO2. Sensors and Actuators B: Chemical, 357, 131427.
[35]Bai, M., Chen, M., Li, X., & Wang, Q. (2022). One-step CVD growth of ZnO nanorod/SnO2 film heterojunction for NO2 gas sensor. Sensors and Actuators B: Chemical, 373, 132738.
[36]Abduljabbar, Q. A., Radwan, H. A., Marei, J. M., & Rzaij, J. M. (2022). Spray rate effects on the NO2 gas sensor properties of Ni-doped SnO2 nanoflakes. Engineering Research Express, 4(1), 015028.
[37]Zhen, Y. X., Song, B. Y., Liu, W. X., Ye, J. X., Zhang, X. F., Deng, Z. P., Huo, L. H., & Gao, S. (2022). Ultra-high response and low temperature NO2 sensor based on mesoporous SnO2 hierarchical microtubes synthesized by biotemplating process. Sensors and Actuators B: Chemical, 363, 131852.
[38]Xia, Y., Xu, L., He, S., Zhou, L., Wang, M., Wang, J., & Komarneni, S. (2022). UV-activated WS2/SnO2 2D/0D heterostructures for fast and reversible NO2 gas sensing at room temperature. Sensors and Actuators B: Chemical, 364, 131903.
[39]Mandal, M., Subudhi, S., Alam, I., Subramanyam, B. V. R. S., Patra, S., Raiguru, J., Das, S., & Mahanandia, P. (2021). Facile synthesis of new hybrid electrode material based on activated carbon/multiwalled carbon nanotubes@ ZnFe2O4 for supercapacitor applications. Inorganic Chemistry Communications, 123, 108332.
[40]Hoque, S. M., Hossain, M. S., Choudhury, S., Akhter, S., & Hyder, F. (2016). Synthesis and characterization of ZnFe2O4 nanoparticles and its biomedical applications. Materials letters, 162, 60-63.
[41]Bag, A., Kumar, M., Moon, D. B., Hanif, A., Sultan, M. J., Yoon, D. H., & Lee, N. E. (2021). A room-temperature operable and stretchable NO2 gas sensor composed of reduced graphene oxide anchored with MOF-derived ZnFe2O4 hollow octahedron. Sensors and Actuators B: Chemical, 346, 130463.
[42]Runa, A., Zhang, X., Wen, G., Zhang, B., Fu, W., & Yang, H. (2018). Actinomorphic flower-like n-ZnO/p-ZnFe2O4 composite and its improved NO2 gas-sensing property. Materials Letters, 225, 73-76.
[43]Nguyen, L. T., Vo, D. V. N., Nguyen, L. T., Duong, A. T., Nguyen, H. Q., Chu, N. M., Nguyen, D. T. C., & Van Tran, T. (2022). Synthesis, characterization, and application of ZnFe2O4@ ZnO nanoparticles for photocatalytic degradation of Rhodamine B under visible-light illumination. Environmental Technology & Innovation, 25, 102130.
[44]Sharma, S., Dutta, V., Raizada, P., Hosseini-Bandegharaei, A., Thakur, V., Nguyen, V. H., Vanle, Q., & Singh, P. (2021). An overview of heterojunctioned ZnFe2O4 photocatalyst for enhanced oxidative water purification. Journal of Environmental Chemical Engineering, 9(5), 105812.
[45]Zeleny, J. (1914). The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review, 3(2), 69.
[46]Taylor, G. I. (1964). Disintegration of water drops in an electric field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 280(1382), 383-397.
[47]Taylor, G. I. (1966). The force exerted by an electric field on a long cylindrical conductor. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 291(1425), 145-158.
[48]Taylor, G. I. (1969). Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 313(1515), 453-475.
[49]Melcher, J. R., & Taylor, G. I. (1969). Electrohydrodynamics: a review of the role of interfacial shear stresses. Annual review of fluid mechanics, 1(1), 111-146.
[50]Hohman, M. M., Shin, M., Rutledge, G., & Brenner, M. P. (2001). Electrospinning and electrically forced jets. I. Stability theory. Physics of fluids, 13(8), 2201-2220.
[51]Reznik, S. N., Yarin, A. L., Theron, A., & Zussman, E. (2004). Transient and steady shapes of droplets attached to a surface in a strong electric field. Journal of Fluid Mechanics, 516, 349-377.
[52]Li, Z., & Wang, C. (2013). Effects of working parameters on electrospinning. In One-dimensional nanostructures (pp. 15-28). Springer, Berlin, Heidelberg.
[53]Beachley, V., & Wen, X. (2009). Effect of electrospinning parameters on the nanofiber diameter and length. Materials Science and Engineering: C, 29(3), 663-668.
[54]Carnell, L. S., Siochi, E. J., Wincheski, R. A., Holloway, N. M., & Clark, R. L. (2009). Electric field effects on fiber alignment using an auxiliary electrode during electrospinning. Scripta Materialia, 60(6), 359-361.
[55]Thompson, C. J., Chase, G. G., Yarin, A. L., & Reneker, D. H. (2007). Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer, 48(23), 6913-6922.
[56]Koski, A., Yim, K., & Shivkumar, S. J. M. L. (2004). Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 58(3-4), 493-497.
[57]De Vrieze, S., Van Camp, T., Nelvig, A., Hagström, B., Westbroek, P., & De Clerck, K. (2009). The effect of temperature and humidity on electrospinning. Journal of materials science, 44(5), 1357-1362.
[58]Cao, Z., Gao, Q., Zhou, M., Li, X., & Wang, Q. (2022). LaNiTiO3-SE-based stabilized zirconium oxide mixed potentiometric SO2 gas sensor. Ceramics International, 48(7), 9269-9276.
[59]Wu, R., Tian, L., Li, H., Liu, H., Luo, J., Tian, X., Hua, Z., Wu, Y., & Fan, S. (2022). A selective methane gas sensor based on metal oxide semiconductor equipped with an on-chip microfilter. Sensors and Actuators B: Chemical, 359, 131557.
[60]Zhi, Z., Gao, W., Yang, J., Geng, C., Yang, B., Tian, C., Fan, S., Li, H., Li, J., & Hua, Z. (2022). Amperometric Hydrogen Gas Sensor Based on Pt/C/Nafion Electrode and Ionic Electrolyte. Sensors and Actuators B: Chemical, 132137.
[61]Mitri, F., De Iacovo, A., De Santis, S., Quarta, D., Giansante, C., Orsini, M., & Colace, L. (2022). Optical gas sensor based on the combination of a QD photoluminescent probe and a QD photodetector. Nanotechnology, 33(47), 475501.
[62]楊力儼, 柯廷勳, & 曾文甲. (2019). 固態氣體感測器介紹. 科儀新知, (218), 12-25.
[63]詹慶安。SnO2-ZnO與SnO2-La2O3異質結構於氣體感測器應用研究。國立高雄應用科技大學機械工程系碩士論文,高雄市,2018。[64]薛宇焜。氧化鋅-鈣鈦礦異質結構之特性與氣體感測應用。國立高雄科技大學機械工程系碩士論文,高雄市,2020。[65]游孟舜。氧化鎢-氧化鑭異質結合奈米纖維於氣體感測與特性研究。國立高雄科技大學機械工程系碩士論文,高雄市,2021。[66]陳柏達。鑭鉛鐵氧/氧化鎢異質結構之氣體選擇性研究。國立高雄科技大學機械工程系碩士論文,高雄市,2021。[67]劉楠楠, & 孫鑑波. (2022). SnO2中空球的製備,表徵以及NO2氣敏特性研究. Applied Physics, 12, 119.
[68]Ni, Q., Sun, L., Cao, E., Hao, W., Zhang, Y., & Ju, L. (2019). Enhanced acetone sensing performance of the ZnFe2O4/SnO2 nanocomposite. Applied Physics A, 125(11), 1-8.
[69]Sonker, R. K., Sabhajeet, S. R., Singh, S., & Yadav, B. C. (2015). Synthesis of ZnO nanopetals and its application as NO2 gas sensor. Materials Letters, 152, 189-191.
[70]Cho, N. G., Yang, D. J., Jin, M. J., Kim, H. G., Tuller, H. L., & Kim, I. D. (2011). Highly sensitive SnO2 hollow nanofiber-based NO2 gas sensors. Sensors and Actuators B: Chemical, 160(1), 1468-1472.
[71]Shishiyanu, S. T., Shishiyanu, T. S., & Lupan, O. I. (2006). Novel NO2 gas sensor based on cuprous oxide thin films. Sensors and Actuators B: Chemical, 113(1), 468-476.
[72]Liang, Y. C., & Hsu, Y. W. (2022). Design of thin-film configuration of SnO2–Ag2O composites for NO2 gas-sensing applications. Nanotechnology Reviews, 11(1), 1842-1853.
[73]Siril, V. S., Jasmi, K. K., AntoJohny, T., & Madhusoodanan, K. N. (2022). Investigation of thickness effect on NO2 gas sensing properties of ZnO/Na thin films. Materials Today: Proceedings.