|
[1]A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the american chemical society, vol. 131, no. 17, pp. 6050-6051, 2009. [2]W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange," Science, vol. 348, no. 6240, pp. 1234-1237, 2015. [3]W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, and M. Grätzel, "Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers," Science, vol. 350, no. 6263, pp. 944-948, 2015. [4]S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber," Science, vol. 342, no. 6156, pp. 341-344, 2013. [5]D. Vak, S. S. Kim, J. Jo, S. H. Oh, S. I. Na, J. Kim, and D. Y. Kim, "Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation," Applied Physics Letters, vol. 91, no. 8, p. 081102, 2007. [6]S. Y. Park, Y. J. Kang, S. Lee, D. G. Kim, J. K. Kim, J. H. Kim, and J. W. Kang, "Spray-coated organic solar cells with large-area of 12.25 cm2," Solar Energy Materials and Solar Cells, vol. 95, no. 3, pp. 852-855, 2011. [7]Z. Ku, Y. Rong, M. Xu, T. Liu, and H. Han, "Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode," Scientific reports, vol. 3, no. 1, pp. 1-5, 2013. [8]M. Duan, C. Tian, Y. Hu, A. Mei, Y. Rong, Y. Xiong, M. Xu, Y. Sheng, P. Jiang, and X. Hou, "Boron-doped graphite for high work function carbon electrode in printable hole-conductor-free mesoscopic perovskite solar cells," ACS applied materials & interfaces, vol. 9, no. 37, pp. 31721-31727, 2017. [9]K. Hwang, Y. S. Jung, Y. J. Heo, F. H. Scholes, S. E. Watkins, J. Subbiah, D. J. Jones, D. Y. Kim, and D. Vak, "Toward large scale roll‐to‐roll production of fully printed perovskite solar cells," Advanced materials, vol. 27, no. 7, pp. 1241-1247, 2015. [10]T. M. Schmidt, T. T. Larsen Olsen, J. E. Carlé, D. Angmo, and F. C. Krebs, "Upscaling of perovskite solar cells: fully ambient roll processing of flexible perovskite solar cells with printed back electrodes," Advanced Energy Materials, vol. 5, no. 15, p. 1500569, 2015.
[11]Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, and J. Huang, "Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers," Energy & Environmental Science, vol. 8, no. 5, pp. 1544-1550, 2015. [12]Y. Deng, Q. Dong, C. Bi, Y. Yuan, and J. Huang, "Air‐stable, efficient mixed‐cation perovskite solar cells with Cu electrode by scalable fabrication of active layer," Advanced Energy Materials, vol. 6, no. 11, p. 1600372, 2016. [13]H. C. Hsu, S. H. Wu, Y. L. Tung, and C. F. Shih, "Long-term stable perovskite solar cells prepared by doctor blade coating technology using bilayer structure and non-toxic solvent," Organic Electronics, vol. 101, p. 106400, 2022. [14]B. Chen, J. Y. Zhengshan, S. Manzoor, S. Wang, W. Weigand, Z. Yu, G. Yang, Z. Ni, X. Dai, and Z. C. Holman, "Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells," Joule, vol. 4, no. 4, pp. 850-864, 2020. [15]X. Dai, Y. Deng, C. H. Van Brackle, S. Chen, P. N. Rudd, X. Xiao, Y. Lin, B. Chen, and J. Huang, "Scalable fabrication of efficient perovskite solar modules on flexible glass substrates," Advanced Energy Materials, vol. 10, no. 1, p. 1903108, 2020. [16]N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature materials, vol. 13, no. 9, pp. 897-903, 2014. [17]N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, "Compositional engineering of perovskite materials for high-performance solar cells," Nature, vol. 517, no. 7535, pp. 476-480, 2015. [18]Z. Yang, A. Rajagopal, and A. K. Y. Jen, "Ideal bandgap organic–inorganic hybrid perovskite solar cells," Advanced Materials, vol. 29, no. 47, p. 1704418, 2017. [19]N. Tripathi, Y. Shirai, M. Yanagida, A. Karen, and K. Miyano, "Novel surface passivation technique for low-temperature solution-processed perovskite PV cells," ACS applied materials & interfaces, vol. 8, no. 7, pp. 4644-4650, 2016. [20]Y. Deng, X. Zheng, Y. Bai, Q. Wang, J. Zhao, and J. Huang, "Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules," Nature Energy, vol. 3, no. 7, pp. 560-566, 2018. [21]Y. Lin, L. Shen, J. Dai, Y. Deng, Y. Wu, Y. Bai, X. Zheng, J. Wang, Y. Fang, and H. Wei, "π‐Conjugated Lewis base: efficient trap‐passivation and charge‐extraction for hybrid perovskite solar cells," Advanced materials, vol. 29, no. 7, p. 1604545, 2017.
[22]B. Chen, Z. Yu, K. Liu, X. Zheng, Y. Liu, J. Shi, D. Spronk, P. N. Rudd, Z. Holman, and J. Huang, "Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%," Joule, vol. 3, no. 1, pp. 177-190, 2019. [23]M. Jošt, E. Köhnen, A. B. Morales Vilches, B. Lipovšek, K. Jäger, B. Macco, A. Al Ashouri, J. Krč, L. Korte, and B. Rech, "Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield," Energy & Environmental Science, vol. 11, no. 12, pp. 3511-3523, 2018. [24]E. Köhnen, M. Jošt, A. B. Morales Vilches, P. Tockhorn, A. Al Ashouri, B. Macco, L. Kegelmann, L. Korte, B. Rech, and R. Schlatmann, "Highly efficient monolithic perovskite silicon tandem solar cells: analyzing the influence of current mismatch on device performance," Sustainable Energy & Fuels, vol. 3, no. 8, pp. 1995-2005, 2019. [25]X. Zhang, L. Li, Z. Sun, and J. Luo, "Rational chemical doping of metal halide perovskites," Chemical Society Reviews, vol. 48, no. 2, pp. 517-539, 2019. [26]Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, and J. You, "Surface passivation of perovskite film for efficient solar cells," Nature Photonics, vol. 13, no. 7, pp. 460-466, 2019. [27]L. Ruan, W. Shen, A. Wang, Q. Zhou, H. Zhang, and Z. Deng, "Stable and conductive lead halide perovskites facilitated by X-type ligands," Nanoscale, vol. 9, no. 21, pp. 7252-7259, 2017. [28]X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, and J. Huang, "Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations," Nature Energy, vol. 2, no. 7, pp. 1-9, 2017. [29]F. Zhang and K. Zhu, "Additive engineering for efficient and stable perovskite solar cells," Advanced Energy Materials, vol. 10, no. 13, p. 1902579, 2020. [30]F. Zhang, D. Bi, N. Pellet, C. Xiao, Z. Li, J. J. Berry, S. M. Zakeeruddin, K. Zhu, and M. Grätzel, "Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells," Energy & Environmental Science, vol. 11, no. 12, pp. 3480-3490, 2018. [31]J. Zhu, D. H. Kim, J. D. Kim, D. G. Lee, W. B. Kim, S. W. Chen, J. Y. Kim, J. M. Lee, H. Lee, and G. S. Han, "All-in-one Lewis base for enhanced precursor and device stability in highly efficient perovskite solar cells," ACS Energy Letters, vol. 6, no. 10, pp. 3425-3434, 2021.
[32]Z. Yang, J. Dou, S. Kou, J. Dang, Y. Ji, G. Yang, W. Q. Wu, D. B. Kuang, and M. Wang, "Multifunctional phosphorus‐containing lewis acid and base passivation enabling efficient and moisture‐stable perovskite solar cells," Advanced Functional Materials, vol. 30, no. 15, p. 1910710, 2020. [33]S. P. Dunfield, L. Bliss, F. Zhang, J. M. Luther, K. Zhu, M. F. van Hest, M. O. Reese, and J. J. Berry, "From defects to degradation: A mechanistic understanding of degradation in perovskite solar cell devices and modules," Advanced Energy Materials, vol. 10, no. 26, p. 1904054, 2020. [34]S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, "Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells," Nano letters, vol. 14, no. 10, pp. 5561-5568, 2014. [35]S. Wang, A. Wang, X. Deng, L. Xie, A. Xiao, C. Li, Y. Xiang, T. Li, L. Ding, and F. Hao, "Lewis acid/base approach for efficacious defect passivation in perovskite solar cells," Journal of Materials Chemistry A, vol. 8, no. 25, pp. 12201-12225, 2020. [36]J. Zhao, A. Wang, and M. A. Green, "24.5% efficiency PERT silicon solar cells on SEH MCZ substrates and cell performance on other SEH CZ and FZ substrates," Solar Energy Materials and Solar Cells, vol. 66, no. 1-4, pp. 27-36, 2001. [37]J. Zhao, A. Wang, and M. A. Green, "High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates," Solar Energy Materials and Solar Cells, vol. 65, no. 1-4, pp. 429-435, 2001. [38]National Renewable Energy Laboratory , Best Research-Cell , (2022) https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf [Accessed 29 March 2023] [39]A. Zekry, A. Shaker, and M. Salem, "Solar cells and arrays: principles, analysis, and design," in Advances in renewable energies and power technologies: Elsevier, 2018, pp. 3-56. [40]B. Xu, Z. Zhu, J. Zhang, H. Liu, C. C. Chueh, X. Li, and A. K. Y. Jen, "4‐Tert‐butylpyridine free organic hole transporting materials for stable and efficient planar perovskite solar cells," Advanced Energy Materials, vol. 7, no. 19, p. 1700683, 2017. [41]N. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely, and H. J. Snaith, "Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites," ACS nano, vol. 8, no. 10, pp. 9815-9821, 2014.
[42]D. Wang, J. Zheng, X. Wang, J. Gao, W. Kong, C. Cheng, and B. Xu, "Improvement on the performance of perovskite solar cells by doctor-blade coating under ambient condition with hole-transporting material optimization," Journal of Energy Chemistry, vol. 38, pp. 207-213, 2019. [43]N. Li, F. Xu, Z. Qiu, J. Liu, X. Wan, X. Zhu, H. Yu, C. Li, Y. Liu, and B. Cao, "Sealing the domain boundaries and defects passivation by Poly (acrylic acid) for scalable blading of efficient perovskite solar cells," Journal of Power Sources, vol. 426, pp. 188-196, 2019. [44]V. Hoseinpour, Z. Shariatinia, and S. Mahmoodpour, "Surface passivation boosted performances of perovskite solar cells assembled under ambient conditions," Optical Materials, vol. 131, p. 112746, 2022. [45]K. W. Huang, M. H. Li, P. T. Hsieh, C. F. Lin, R. Rajendran, Y. L. Tung, and P. Chen, "Role of crown ether in the perovskite precursor for doctor-bladed perovskite solar cells: investigation by liquid-phase scanning electron microscopy," Journal of Materials Chemistry C, vol. 10, no. 42, pp. 16016-16027, 2022. [46]https://research.nchu.edu.tw/unit-news-detail/id/63/unit/9/mid/83#FE-SEM [Accessed 25 July 2023] [47]https://nanocenter.nchu.edu.tw/instrument_detail.php?id=6db8b80e-e908-11ea-9daf-0050569c05ae [Accessed 25 July 2023] [48]https://ctrmost-cfc.ncku.edu.tw/p/404-1210-7304.php?Lang=zh-tw [Accessed 25 July 2023] [49]https://nscric.site.nthu.edu.tw/p/404-1186-122533.php?Lang=zh-tw [Accessed 25 July 2023] [50]T. S. Su, F. T. Eickemeyer, M. A. Hope, F. Jahanbakhshi, M. Mladenovic, J. Li, Z. Zhou, A. Mishra, J. H. Yum, and D. Ren, "Crown ether modulation enables over 23% efficient formamidinium-based perovskite solar cells," Journal of the American Chemical Society, vol. 142, no. 47, pp. 19980-19991, 2020. [51]Y. Yang, T. Zhao, M. H. Li, X. Wu, M. Han, S. C. Yang, Q. Xu, L. Xian, X. Chi, and N. J. Zhao, "Passivation of positively charged cationic defects in perovskite with nitrogen-donor crown ether enabling efficient perovskite solar cells," Chemical Engineering Journal, vol. 451, p. 138962, 2023. [52]P. Sadhukhan, A. Roy, S. Bhandari, T. K. Mallick, S. Das, and S. Sundaram, "Achieving high open circuit voltage for hole transport layer free ambient perovskite solar cells utilizing electric double layer effect," Solar Energy Materials and Solar Cells, vol. 251, p. 112148, 2023.
[53]D. K. Schroder, Semiconductor material and device characterization. John Wiley & Sons, 2015. [54]M. He, B. Li, X. Cui, B. Jiang, Y. He, Y. Chen, D. O’Neil, P. Szymanski, M. A. Ei Sayed, and J. Huang, "Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells," Nature communications, vol. 8, no. 1, p. 16045, 2017. [55]N. Kumar, H. B. Lee, S. Hwang, and J. W. Kang, "Large-area, green solvent spray deposited nickel oxide films for scalable fabrication of triple-cation perovskite solar cells," Journal of Materials Chemistry A, vol. 8, no. 6, pp. 3357-3368, 2020. [56]R. Zheng, S. Zhao, H. Zhang, H. Li, J. Zhuang, X. Liu, H. Li, and H. Wang, "Defect passivation grain boundaries using 3-aminopropyltrimethoxysilane for highly efficient and stable perovskite solar cells," Solar Energy, vol. 224, pp. 472-479, 2021.
|